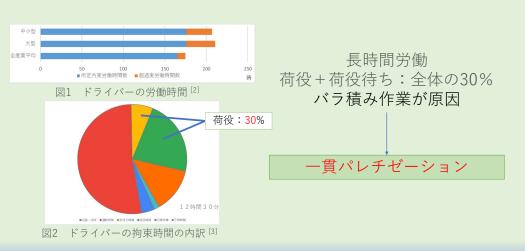
トラック輸送におけるパレット化が 二酸化炭素排出量に及ぼす影響に関する研究

東京海洋大学 黒川研究室 流通情報工学科4年 1823027 谷田 渓

1.研究背景 - 日本の環境問題

図1 運輸貨物の二酸化炭素排出量の年推移[1]

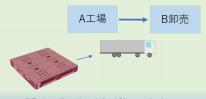
運輸貨物の排出量:全体の7%


物流の効率化による対策 (標準化、技術)

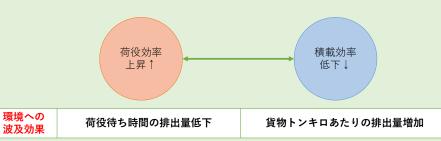
目次

1. 研究背景

- 2. 研究目的
- 3. 二酸化炭素排出量の分析 アイドリング
- 4. 二酸化炭素排出量の分析 輸送
- 5. おわりに


1.研究背景ードライバーの労働実態

一貫パレチゼーションの概要


一貫パレチゼーションについて

- ・貨物をパレット単位で運搬 発着地まで一貫して同一のパレットを使用する物流
- ・バラ積みより荷役時間を1/2倍短縮→荷役待ちの短縮

パレット化による荷役時間短縮事例		
宮城	1時間51分	40分
山梨	2時間	27分

問題 一貫パレチゼーションのジレンマ

V.Kočí(2018)³⁾: パレットのライフサイクルでの排出量を評価 →パレットの自重による積載重量の増加=二酸化炭素排出量の増加 →パレットの積荷の積載効率について述べていない

目次

- 1. 研究背景
- 2. 研究目的
- 3. CO2排出量の分析 アイドリング
- 4. CO2排出量の分析 輸送
- 5. おわりに

• 問題点

パレット化:荷役効率を上昇 ↔ 積載率の低下 以下の2つの影響 荷役待ち時間短縮 → アイドリング時の排出量を低下

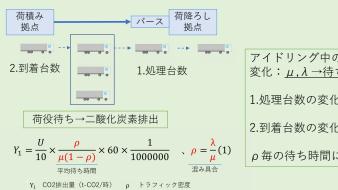
積載率の低下 → トンキロあたりの排出量を増加

目的

環境負荷の少ないパレット化の導入条件の検討

• 分析の流れ

①荷役待ち : 待ち行列モデル・荷役処理能力変化に関する排出量の傾向 ②積載率低下:改良トンキロ法・以下の2つの影響に関する排出量の傾向


1.積荷の特性(積載率、容積)

2.パレットの特性(サイズ、重量)とトラック荷台の特性(サイズ)

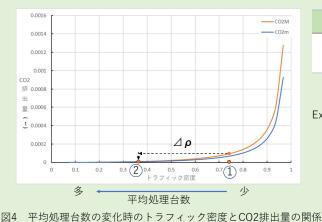
目次

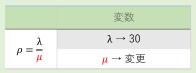
- 1. 研究背景
- 2. 研究目的
- 3. CO2排出量の分析 アイドリング
- 4. CO2排出量の分析 輸送
- 5. おわりに

分析方法-M/M/1モデル

平均処理台数(個/時)

アイドリング中の二酸化炭素排出量 (t) 変化: μ , λ →待ち時間→排出量


1.処理台数の変化(μ)

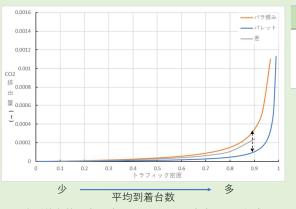

2.到着台数の変化(λ)を処理能力ごとに比較

ρ毎の待ち時間に対応する排出量を確認

70%

処理台数の変化時

Ex)処理台数が2倍になったとき 処理台数 40(台/時)→80(台/時)


 $85.5g \rightarrow 8.5g$

80%以上

処理台数の増加によるCO2削減

到着台数の変化時

U アイドリング10分当たり **λ** 平均到着台数(個/時) CO2排出量(g) ⁴⁾

Ex)トラフィック密度:0.7 パレット \rightarrow 2.66 \times 10⁻⁵ t ばら積み → 8.87 × 10⁻⁵ t

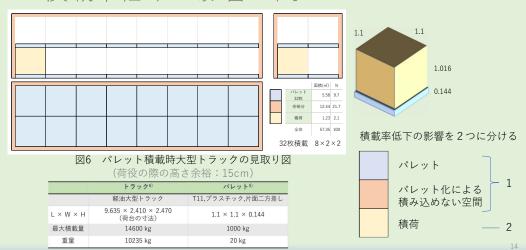
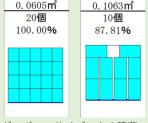

同じ混み具合でも処理台数が多いほど有利

図5 平均到着台数の変化時のトラフィック密度とCO2排出量の関係

目次

- 1. 研究背景
- 2. 研究目的
- 3. CO2排出量の分析 アイドリング
- 4. CO2排出量の分析 輸送
- 5. おわりに

積載率低下の影響に関して


パレット化による積載率の低下要因

1. パレット、隙間分の低下

275mm × 220mm 425mm × 250mm 0.0605**m**² 0. 1063 m² 20個 10個 100.00% 87.81%

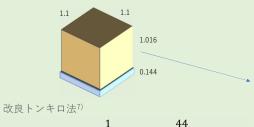

容積率低下

図8 ダンボールサイズによる積荷の隙間 (出典:カートンケースの標準化推進マニュアル7))

容積率:パレットに対する積荷の割合

積載率:トラックの最大積載量に対する積荷の重量、容積を表した割合

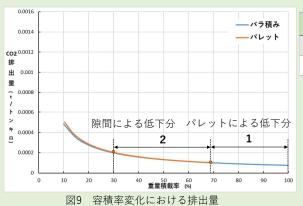
積荷の容積率の変化時

 $Y_2 = L \times W \times X \times \frac{1}{1000} \times A \times B \times \frac{44}{12}$

 $X = 2.71 - 0.812 \times \ln\left(\frac{W}{C}\right) - 0.654 \times \ln(C)$ (3)

L 2地点間距離 (km)

Y₂ CO2排出量 (t) W 積載重量(kg) A 単位発熱量 (GJ/kl)


X 燃料使用原単位 (L/トンキロ)B 排出係数 (t-C/GJ) C 最大積載重量 (kg)

積荷の特性による影響 貨物トンキロあたり二酸化炭素排出量

隙間 → 容積の変化とみなす

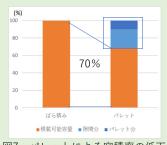
バラ積みとの比較

積荷の容積率の変化時

	変数	
比重	一定 0.25 t/m³	
容積率	変化	

1:パレット、隙間分の低下分 30%

2:隙間による低下分


Ex) 容積率 100%→80%

排出量は 1.2倍 の増加

積荷の隙間→影響あり 容積率大→バラ積みとの差が短縮

パレット化による積載率の低下要因

1. パレット分、隙間分の低下 2. 積荷の隙間

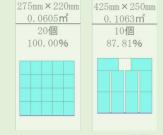
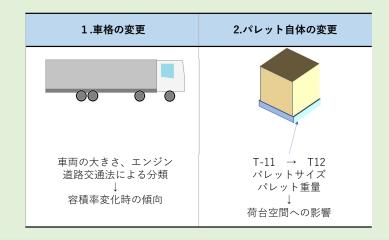


図7 パレットによる容積率の低下


図8 ダンボールサイズによる積荷の隙間 〔出典:カートンケースの標準化推進マニュアル

容積率:パレットに対する積荷の割合

積載率:トラックの最大積載量に対する積荷の重量、容積を表した割合

17

検討項目 - パレット分、隙間分の低下

1.車格の変更一中型、大型トラック

20

1.車格の変更

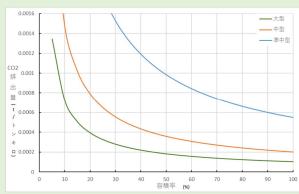


図12 車格別、容積率変化における排出量

容積率の変化率(各80→100%を基準とする)

	大型	中型	準中型
20→40	8.45	8.69	8.76
40→60	3.04	3.07	3.09
60→80	1.600	1.607	1.609
80→100	1	1	1

排出量の多さ:大型トラックが有利 容積率の変化→容積の増加に伴い 変化率はほぼ同じになる

2.パレットの変更

• 重量 2kg - 33kgの変化

• サイズ規格

			T-11パレット ⁶⁾		T-12パレット ¹⁰⁾	
Ì			片面二方		方差し	
	寸法 (L:	×W×H)			1.2 × 1 ×	0.13 m
	最大積	責載量			0 kg	
	重量		20 kg			
	容積	(m³)	0.174 m³		0.156 m³	
	枚数・	大型	32	68.6%	32	69.0%
	積荷	中型	20	68.4%	20	68.8%
	容積	準中型	6	31.3%	12	63.7%

業界はT-11パレットに注目 準中型車でT-11は幅の問題 2列分の積載が不可能 ↓ T-12によって2列分 積載量の増加が可能

22

2.1.パレットの重量の変更時

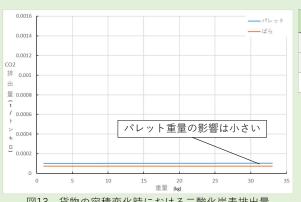


図13 貨物の容積変化時における二酸化炭素排出量

	変数	
容積率	一定 100%	
比重	一定 0.25t/㎡	
パレット	変化 2-33 kg	

バラ積みと同じだけの貨物を積載

Ex) バラ \rightarrow 7.44 \times 10⁻⁵ t

 $2 \text{ kg} \rightarrow 10.12 \times 10^{-5} \text{ t}$ $33 \text{ kg} \rightarrow 10.30 \times 10^{-5} \text{ t}$

パレットの自重<荷台との隙間

2.2.パレットサイズの変更時

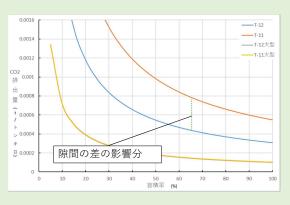


図14 貨物の容積変化時における二酸化炭素排出量

	T-12 12枚	T-11 6枚
20→40	8.76	8.761
40→60	3.09	3.085
60→80	1.609	1.609
80→100	1	1

容積率変化への影響はほぼない 排出量の差は縮小する (T-12/T-11)

 $50\% \rightarrow 1.805$ $100\% \rightarrow 1.789$

パレットサイズの変更 ↓ 容積積載率の上昇の可能性

目次

- 1. 研究背景
- 2. 研究目的
- 3. CO2排出量の分析 アイドリング
- 4. CO2排出量の分析 輸送
- 5. おわりに

まとめ

目的:環境負荷の少ないパレット化の導入条件の検討

- 荷役待ち 慢性的な荷役待ちが発生している拠点ほど効果が高い
- 貨物の重量積載率が低い場合→排出量の増加に大きな影響を与えない
- → トラック荷台の寸法との調整 パレットの考慮:サイズ規格>自重 (パレット分と隙間の影響の考慮)

参考資料

- 国立研究開発法人国立環境研究所 日本の温室効果ガス排出量デー 7. 国土交通省 カートンケースの標準化推進マニュアル 2010年(2022年1 夕2020年度速報値(2022年1月28日 閲覧) https://www.nies.go.jp/gio/archive/ghgdata/jqjm10000011nkrnatt/L5-7gas_preliminary_2022-gioweb_ver1.0.xlsx
- 国土交通省 "トラック輸送状況の実態調査結果" 2017 (2022年1月 28日 閲覧) https://www.mlit.go.jp/common/001128767.pdf
- Kočí, V. (2019). Comparisons of environmental impacts between wood and plastic transport pallets. Science of the total environment, 686, 514-528.
- 環境省 "アイドリング・ストップQ&A" (2022年1月28日閲覧) https://www.env.go.jp/earth/cop3/dekiru/ta_03-2.html
- 日本パレットプール株式会社 プラスチック製パレット(2022年1月 28日閲覧) https://www.npp-web.co.jp/products/
- 三菱ふそうトラックバス株式会社 SUPER GREATカタログ (2022) 年1月28日閲覧)

https://assets.mitsubishifuso.com/fusoassets/2019/07/MY 21SuperGreat CARGO web 2103.pdf

- 月28日閲覧) https://www.mlit.go.jp/common/000121914.pdf
- 8. 経済産業省 国土交通省 ロジスティクス分野におけるCO2排出量算定 方法共同ガイドラインver3.1(2022年1月28日閲 覧)http://www.greenpartnership.jp/co2/guidelinev3.1.pdf
- 9. 三菱ふそうトラックバス株式会社 CANTERカタログ (2022年1月28日 閲覧)https://assets.mitsubishi-fuso.com/fusoassets/2020/10/CANTER_2020_Brochure.pdf
- 10. 三菱ふそうトラックバス株式会社 FIGHTERカタログ (2022年1月28日 閲覧) https://assets.mitsubishifuso.com/fusoassets/2021/05/FIGHTER WINGVAN web 2104.pdf

ご清聴ありがとうございました