
Deep Learning: Part 2

東京海洋大学 TUMSAT

竹縄知之 Tomoyuki Takenawa

1

目次

1 Forward propagation in neural networks 5

1.1 Forward propagation in an affine layer . 6

1.2 Activation function . 8

2 Design of loss function and output layer 9

2.1 In case of a regression problem . 10

2.2 In case of a 0-1 binary classification problem . 11

2.3 When classifying into K types . 12

3 Backpropagation 14

3.1 Stochastic gradient descent method and differentiation of errors 15

3.2 Chain rule . 16

3.3 Exercise on the chain rule ♯ . 20

3.4 Computational graph . 22

3.5 Computational graphs for neural networks . 27

3.6 Exercise on backpropagation . 32

3.7 Summary of the backpropagation formula . 36

3.8 Exercises on visualization of computational graphs with PyTorch 38

2

4 Neural network with two layers 39

4.1 Neural network with two layers (Regression) . 40

4.2 Exercises on implementing a simple two-layer neural network by Numpy 43

5 Neural networks with multiple layers 45

5.1 Class of layers . 46

5.2 Exercises on Classes of layers . 53

5.3 Exercises on multilayer neural networks . 55

6 Improving the optimization method 57

6.1 Momentum . 60

6.2 Adam . 63

6.3 Exercises on implementation of optimization methods 66

7 How to set the initial values of weight parameters 67

7.1 Convergence and divergence of data in the middle layers 68

7.2 Parameter initialization strategy . 69

7.3 Exercises on how to take initial values of parameters 71

8 Batch normalization 72

8.1 Normalization of datasets . 73

8.2 Algorithm for batch normalization . 75

8.3 Exercises on batch normalization . 78

3

8.4 Exercises on optimization for deep models . 79

9 Regularization for deep models 80

9.1 Parameter norm penalty . 81

9.2 Dropout . 85

9.3 Exercises on dropout . 87

9.4 Comprehensive exercises on regularization . 88

4

1 Forward propagation in neural networks

In this section, you will study that a neural network is a network model that outputs a

prediction ŷ for input data x = [x0, x1, · · · , xD−1] via several layers of computation, and that

the computation in each layer is basically done by linear transformation (or more precisely,

affine transformation) and activation function.

5

1.1 Forward propagation in an affine layer

Each layer of a neural network consists of multiple neurons (vertices of a graph), and the operation in

the lth neuron of the ith layer is a linear transformation (or, more precisely, an affine transformation,

since there is also the operation of adding a constant) followed by a nonlinear transformation as{
a
(i)
l = x

(i−1)
0 w

(i)
0l + x

(i−1)
1 w

(i)
1l + · · ·+ x

(i−1)
K−1 w

(i)
K−1,l + b

(i)
l

x
(i)
l = f

(
a
(i)
l

) .

Here, x(i−1) = (x
(i−1)
0 , · · · , x(i−1)

K−1) is the output value of the previous layer, w
(i)
kl and b

(i)
l are called

the weight parameters of the model, and f(a) is a nonlinear function called the activation function.

Using (K,L) dimensional matrix W (i) =
(
w

(i)
kl

)
and L dimensional vector b(i) =

(
b
(i)
l

)
, the above

equation can be written as {
a(i) = x(i−1)W (i) + b(i)

x(i) = f
(
a(i)

) .

Here, it is assumed that the vector is a horizontal vector and the function f acts on each component

of a(i) (such an action is called broadcasting).

6

In the case of mini-batch

Let’s consider the case of mini-batch learning with N data.

Let the set of output values of the previous layer be an array of type (N,K): X(i−1) =
x
(i−1)
0,0 · · · x

(i−1)
0,K−1

... · · ·
...

x
(i−1)
N−1,0 · · · x

(i−1)
N−1,K−1

, then the forward propagation of the affine layer can be written as

{
A(i) = X(i−1)W (i) + b(i)

X(i) = f
(
A(i)

) .

Here, again W (i) is an array of type (K,L) and b(i) is an array of type (L,). In this case, A(i) and

X(i) are arrays of type (N,L).

Note that in NumPy, it is broadcasted as

(N,L)type array + (L,)type array = (N,L)type array

(the second term viewed as a row vector is added to all the rows of the first term). Also note that

the activation function acts component-wise.

7

1.2 Activation function

The following two activation functions are typical.

Sigmoid function σ(x) =
1

1 + e−x

ReLU (Rectified Linear Unit) function

ReLU(x) = max{0, x}

The following functions are also used depending on the situation.

hyperbolic tangent

tanh(x) =
ex − e−x

ex + e−x

Leaky ReLU function

f(x) =

{
x (x > 0)

0.1x (x ≤ 0)

8

2 Design of loss function and output layer

The loss function or cost function is a measure of the ”badness” of a machine learning model. The

loss function is essentially the same as the error function for measuring the accuracy of predictions,

but sometimes the loss function can include penalties such as the magnitude of parameters. However,

for the sake of simplicity, we will consider only the error function as the loss function for a while.

In order to train a neural network, we need to design the error function appropriately. First, of

course, the error function must be large when the accuracy of the prediction is low, and small when

it is high. Also, it must be differentiable by the parameters of the model in order to be trainable.

In the case of supervised learning, the error function is a function of the correct answer value y and

the predicted value ŷ.

In this section, we introduce a typical output layer and loss function (error function) for supervised

learning of regression and classification problems.

9

2.1 In case of a regression problem

Let the output value be ŷ and the correct answer label be y. It is common to use (one half of)

the squared error
1

2
(ŷ − y)2

as the error function. No activation function is used in the output layer.

In the case of mini-batch training with N data, when the set of output values is

Ŷ = [ŷ(0), · · · , ŷ(N−1)] and the set of correct labels is Y = [y(0), · · · , y(N−1)], (one half of)

the mean squared error

1

2N

N−1∑
n=0

(
ŷ(n) − y(n)

)2

is used.

10

2.2 In case of a 0-1 binary classification problem

In the case of a binary problem where the correct answer is 0 or 1, using the sigmoid function

as the activation function of the output layer ŷ = σ(x) =
1

1 + e−x
and setting P (y = 1) = ŷ and

P (y = 0) = 1− ŷ, we can consider that output is a Bernoulli distribution (a probability distribution

where the probability of 1 is p and the probability of 0 is 1 − p).

It is common to use the cross-entropy of the output value ŷ to the correct label y:

H(y, ŷ) = −y log ŷ − (1− y) log(1− ŷ)

as the error function.

In the case of mini-batch learning with N data, when the set of output values is

Ŷ = [ŷ(0), · · · , ŷ(N−1)] and the set of correct answer labels is Y = [y(0), · · · , y(N−1)], we use

the average cross-entropy

H(Y, Ŷ) = − 1

N

N−1∑
n=0

(
y(n) log ŷ(n) + (1− y(n)) log(1− ŷ(n))

)
as the error function.

11

2.3 When classifying into K types

If we apply a softmax function[
ŷ0 · · · ŷK−1

]
= softmax

([
x0 · · · xK−1

])
=

1

ex0 + · · ·+ exK−1

[
ex0 · · · exK−1

]
as the activation function of the output layer so that each component is greater than or equal to 0

and the sum is 1, we can consider the output to be a categorical distribution with K elementary

events (a distribution in which the probability p0, · · · , pK−1 of each event is given for mutually

exclusive K events).

It is common to use the cross-entropy of this output value ŷ =
[
ŷ0 · · · ŷK−1

]
to the correct

label y =
[
y0 · · · yK−1

]
(one-hot representation, i.e., when the correct answer is l, yl = 1 and

yk = 0 for k ̸= l):

H(y, ŷ) = −
K−1∑
k=0

yk log ŷk

as the error function.

In the case of mini-batch training with N data, the average cross-entropy

H(Y, Ŷ) = − 1

N

N−1∑
n=0

K−1∑
k=0

y
(n)
k log ŷ

(n)
k

is used as the error function.
12

Review of cross-entropy

Information content

Let P (A) be the probability that an event A occurs. When event A occurs in a trial, the information

content is
I(A) = − logP (A).

Cross-entropy

Suppose two probability distributions, P (Ak) and Q(Ak) (k = 0, 1, · · · ,K−1), where all events are

mutually exclusive K events A0, A1, · · · , AK−1. Then,

H(P,Q) = −
K−1∑
k=0

P (Ak) logQ(Ak)

is called the cross-entropy (of Q with respect to P). The cross-entropy is the expected value of the

information content about the probability distribution Q with respect to the probability distribution

P .

13

3 Backpropagation

In order to train a neural network (e.g., by stochastic gradient descent), we need to calculate the

derivative with respect to the parameters of the error function. Calculating the derivative for a single

parameter can be done easily by using numerical differentiation (shifting the parameter slightly and

observing how the error changes). However, this method is very time consuming because it requires

calculating each variable individually. Neural networks use the chain rule of differentiation to do

this efficiently. This calculation is called the backpropagation method because it traces the network

backwards from the error.

14

3.1 Stochastic gradient descent method and differentiation of errors

When the error of a neural network θ̂ = f(x, θ) with parameters θ is written as E(x, θ), the

update of θ by stochastic gradient descent is given by

θ ← θ − λ
∂E

∂θ

(λ > 0 is a hyperparameter called the learning coefficient), where

∂E

∂θ
=

1

N

N−1∑
n=0

∂E(x(n), θ)

∂θ

(x(0), · · · ,x(N−1) are input data in the mini-batch). Thus, we need to compute the partial derivative

of the error with respect to the parameters. The backpropagation method is an efficient way to

calculate this using the chain rule.

15

3.2 Chain rule

For simplicity, the function y = f(x) is written as y = y(x).

Differentiation of composite functions of one variable

If the functions z = z(u) and u = u(x) are both differentiable, then it holds that

dz

dx
=

dz

du

du

dx
= z′(u)u′(x)

When the dependency of the variables is represented by the diagram

,

the derivative formula of the composite function can be interpreted as multiplying the derivatives

corresponding to the arrows.

16

Differentiation of composite functions of two variables

Type 1:

If the function z = z(u) is differentiable and u = u(x, y) is partial differentiable, it holds that

∂z

∂x
=

dz

du

∂u

∂x
= z′(u)ux(x, y) および ∂z

∂y
=

dz

du

∂u

∂y
= z′(u)uy(x, y).

The dependency of the variables is represented by the diagram

.

Again, the derivative formula for the composite function can be interpreted as multiplying the

derivative along the arrows.

17

Type 2:

If the function z = z(u, v) is totally differentiable and u = u(x) and v = v(x) are differentiable, it

holds that
dz

dx
=

∂z

∂u

du

dx
+

∂z

∂v

dv

dx
= zu(u, v)u

′(x) + zv(u, v) v
′(x).

The dependency of the variables is represented by the diagram

In this case, there are two routes that follow the arrow from x to z, and the derivative formula for

the composite function can be interpreted as the sum of the derivatives along the arrow for each

route.

18

Type 3:

If the function z = z(u, v) is totally differentiable and u = u(x, y) and v = v(x, y) are partial

differentiable, it holds that

∂z

∂x
=

∂z

∂u

∂u

∂x
+

∂z

∂v

∂v

∂x
= zu(u, v)ux(x, y) + zv(u, v) vx(x, y)

and
∂z

∂y
=

∂z

∂u

∂u

∂y
+

∂z

∂v

∂v

∂y
= zu(u, v)uy(x, y) + zv(u, v) vy(x, y).

The dependency of the variables is represented by the diagram

In this case, there are two routes from x or y to z following the arrows, and the derivative formula

for the composite function can still be interpreted as the sum of the derivatives along the arrows

for each route.

19

3.3 Exercise on the chain rule ♯

(Do it if it’s not too hard.)

(1) When z = z(u), u =
1

1 + e−x
(sigmoid function), represent

dz

dx
using

dz

du
.

(2) In (1), when z = −t log u − (1 − t) log(1 − u) (0-1 value cross-entropy), represent
dz

dx
using

t, u.

(3) When z = z(u, v), u = 1 + ex, v = 1 + e−x (input x is separated into u and v and then

merges at z), represent
dz

dx
using

∂z

∂u
and

∂z

∂v
.

(4) When z = z(u, v), u =
ex

ex + ey
and v =

ey

ex + ey
(softmax functions of two variables),

represent
∂z

∂x
and

∂z

∂y
using

∂z

∂u
and

∂z

∂v
.

(5) In (4), when z = −s log u − t log v, where s + t = 1 and u + v = 1 (cross-entropy of two

variables), represent
∂z

∂x
and

∂z

∂y
using s, t, u, v.

(6) For real numbers w00, w10, w01, w11, b0, b1 and z = z(y0, y1), (y0, y1) = (x0w00 + x1w10 +

b0, x0w01 + x1w11 + b1), represent
∂z

∂x0
and

∂z

∂x1
using

∂z

∂y0
and

∂z

∂y1
.

20

(Correct answer)

(1)
dz

dx
=

e−x

(1 + e−x)2
dz

du
= u(1− u)

dz

du

(2) Substituting
∂z

∂u
= − t

u
+

1− t

1− u
to the result of (1), we obtain

dz

dx
= −t(1−u)+(1−t)u = u−t

(3)
dz

dx
= ex

∂z

∂u
− e−x ∂z

∂v

(4) From
∂u

∂x
=

∂v

∂y
=

ex+y

(ex + ey)2
= uv,

∂u

∂y
=

∂v

∂x
=

ex+y

(ex + ey)2
= −uv, we obtain

∂z

∂x
= uv

(
∂z

∂u
− ∂z

∂v

)
,
∂z

∂y
= uv

(
− ∂z

∂u
+

∂z

∂v

)
(5) Substituting

∂z

∂u
= − s

u
,
∂z

∂v
= − t

v
to the result of (4) and using s+ t = 1 and u+ v = 1, we

obtain
∂z

∂x
= −vs+ut = −(1−u)s+u(1−s) = u−s and ∂z

∂y
= vs−ut = v(1−t)−(1−v)t = v−t

(6)
∂z

∂x0
= w00

∂z

∂y0
+ w01

∂z

∂y1
,

∂z

∂x1
= w10

∂z

∂y0
+ w11

∂z

∂y1

21

3.4 Computational graph

The derivative of a complex function can be calculated using the chain rule by composing simple

functions over and over again. The graph that represents this composition is called a computational

graph. Each vertex (node) in the computational graph represents a function (and its output),

and the arrows indicate that the output from the original vertex is passed on as input to the

destination vertex. Tensorflow, PyTorch, and other deep learning frameworks provide the function

to automatically apply the chain rule using a computational graph (automatic differentiation).

22

A simple example of a computational graph The function z = (ax − y)2 of three real

numbers x, a, and y can be decomposed into the following computational graphs

Here, from
dz

dt
= 2t,

∂t

∂y
= −1, ∂t

∂s
= 1,

∂s

∂a
= x,

∂s

∂x
= a,

we have the following inverse graph:

Here, the equation next to the arrow is the derivative of the variable at the origin of the arrow by

the variable at the destination of the arrow. (Continued to the next page)

23

According to the chain rule, we should be able to get the derivative of the output z for each

variable by multiplying them sequentially following the arrows. In fact, if we try this, we get

and

∂z

∂x
= 2at = 2a(s− y) = 2a(ax− y)

∂z

∂a
= 2xt = 2x(s− y) = 2x(ax− y)

∂z

∂y
= −2t = −2(s− y) = −2(ax− y)

which is the correct result.

In this way, by using a computational graph, the derivative of the output is propagated backwards

through the original graph.

24

A rather complex example of a computational graph

For two real numbers x, y (where 0 ≤ y ≤ 1), consider the (binary) cross-entropy

h = −y log ŷ − (1− y) log(1− ŷ), (where ŷ =
1

1 + e−x
)

with the output of the sigmoid function. This function can be docomposed as the following com-

putational graph

(It can be decomposed more finely, but the graph will be larger).

From

∂h

∂z1
=

∂h

∂z2
= −1, ∂z1

∂y
= log ŷ,

∂z1
∂ŷ

=
y

ŷ
,

∂z2
∂y

= − log(1− ŷ),

∂z2
∂ŷ

= −1− y

1− ŷ
,

dŷ

ds
=

−1
(1 + s)2

,
ds

dx
= −e−x,

25

we have the graph in the opposite direction

According to the chain rule, if the arrows merge, they should be added. Using ŷ =
1

1 + s
and

s =
1− ŷ

ŷ
, we can calcurate as

∂h

∂y
= − log ŷ + log(1− ŷ) = log

1− ŷ

ŷ
= log s = log e−x = −x

∂z

∂x
=

(
−y

ŷ
+

1− y

1− ŷ

)
· −1
(1 + s)2

· (−e−x) =

(
−y

ŷ
+

1− y

1− ŷ

)
· s

(1 + s)2

=

(
−y

ŷ
+

1− y

1− ŷ

)
· ŷ(1− ŷ) (this deformation is somewhat technical.)

= ŷ − y.

26

3.5 Computational graphs for neural networks

In neural networks, the entire layer can be thought of as a node, or vertex, in a computational

graph. In this case, the input and output to the nodes of the computational graph are not a

single number, but a higher-order array. Thinking of them together in this way makes it easier to

implement backpropagation, but the application of the chaining rules at the nodes becomes more

complex.

Let X and W be matrices and E a scalar, we want to calculate
∂E

∂X
and

∂E

∂W
. However, while we can

consider gradients for scalar matrices like
∂E

∂Y
, but we can not consider gradients of a matrix with respect

to a matrix like
∂Y

∂X
or

∂Y

∂W
.

27

A basic example in neural networks

As an example, Let’s consider the node of the matrix product

where X, W , and Y are matrices and E = E(Y) is the final error function of the model in one

dimension. The goal of the backpropagation method is to find
∂E

∂X
and

∂E

∂W
when

∂E

∂Y
is given

※ Symbols: For a matrix X and a function f(X), the gradient
∂f

∂X
= ∇Xf represents a matrix of

the same shape as X with (i, j) components as
∂f

∂xij
. The same is applied when X is a vector or

tensor.

The conclusion is
∂E

∂X
=

∂E

∂Y
WT ,

∂E

∂W
= XT ∂E

∂Y

We will derive this formula later.

28

　
A way to remember using dimensions

We introduced a formula

This formula is very hard to remember, but if you remember that the derivative of a product is the

product of
∂E

∂Y
and X or W , then it is automatically determined by just calculating the dimension.

In fact, if X is a matrix of shape (N,K) and W is a matrix of shape (K,L), then Y is of shape

(N,L) and
∂E

∂X
: shape (N,K),

∂E

∂W
: shape (K,L),

∂E

∂Y
: shape (N,L)

.

29

　
A way to remember using dimensions (continued)

For example, to get a matrix of shape (N,K) of
∂E

∂X
by taking a product with

∂E

∂Y
: shape (N,L),

since
(N,K) = (N,L)× (L,K),

we have to multiply a variable of shape (L,K) from the right, which can only be done with WT .

Problem Using the above method of dimension calculation, derive
∂E

∂W
= XT ∂E

∂Y
.

30

Derivation of the formula

It’s too complicated to do it in general shape, so let’s calculate it when all matrices are of shape

(2, 2). From[
y00 y01
y10 y11

]
=

[
x00 x01

x10 x11

] [
w00 w01

w10 w11

]
=

[
x00w00 + x01w10 x00w01 + x01w11

x10w00 + x11w10 x10w01 + x11w11

]
,

we have

∂E

∂X
=

[∂E
∂x00

∂E
∂x01

∂E
∂x10

∂E
∂x11

]
=

[∂E
∂y00

w00 +
∂E
∂y01

w01
∂E
∂y00

w10 +
∂E
∂y01

w11

∂E
∂y10

w00 +
∂E
∂y11

w01
∂E
∂y10

w10 +
∂E
∂y11

w11

]

=

[∂E
∂y00

∂E
∂y01

∂E
∂y10

∂E
∂y11

] [
w00 w10

w01 w11

]
=

∂E

∂Y
WT .

Hence, it holds that
∂E

∂X
=

∂E

∂Y
WT

for Y = XW . Calcurating similarly, we have

∂E

∂W
= XT ∂E

∂Y
.

31

3.6 Exercise on backpropagation

1. Let X =
[
2 −1 1

]
, W =

2 0

1 1

0 4

, Y = XW and E = E(Y) (E is one-dimensional

variable).

(1) When the error for the correct answer (t1, t2) = (1, 2) is E =
1

2

(
(y1 − t1)

2 + (y2 − t2)
2
)
,

find
∂E

∂X
and

∂E

∂W
.

(2) When the error for the correct answer (t1, t2) = (1, 0) is E = −t1 log
(

ey1

ey1 + ey2

)
−

t2 log

(
ey2

ey1 + ey2

)
, find

∂E

∂X
and

∂E

∂W
.

32

2. Let X =

1 3

2 −1
0 1

, b =
[
2 1

]
, Y = X + b =

1 + 2 3 + 1

2 + 2 −1 + 1

0 + 2 1 + 1

 (calculated by broadcast)

and E = E(Y) (E is one-dimensional variable). For
∂E

∂Y
=

[
1 0

0 −1 1 1

]
, find

∂E

∂X
and

∂E

∂b
.

33

(Answer)

1. (1) 　 from Y =
[
3 3

]
, it holds that

∂E

∂Y
=

[
y1 − t1 y2 − t2

]
=

[
2 1

]
, and hence

∂E

∂X
=

∂E

∂Y
WT =

[
2 1

] [2 1 0
0 1 4

]
=

[
4 3 4

]
∂E

∂W
= XT ∂E

∂Y
=

 2
−1
1

 [
2 1

]
=

 4 2
−2 −1
2 1

(2) Exercise of the chain rule 3.3, it holds that

∂E

∂Y
=

[
ey1

ey1+ey2
− t1

ey2

ey1+ey2
− t2

]
=[

− 1
2

1
2

]
, and hence

∂E

∂X
=

∂E

∂Y
WT =

[
− 1

2
1
2

] [2 1 0
0 1 4

]
=

[
−1 0 2

]
∂E

∂W
= XT ∂E

∂Y
=

 2
−1
1

 [
− 1

2
1
2

]
=

−1 1
1
2
− 1

2

− 1
2

1
2

34

2. From

y00 y01

y10 y11

y20 y21

 =

x00 + b0 x01 + b1

x10 + b0 x11 + b1

x20 + b0 x21 + b1

, it holds that

∂E

∂X
=

∂E
∂x00

∂E
∂x01

∂E
∂x10

∂E
∂x11

∂E
∂x20

∂E
∂x21

 =

∂E
∂y00

∂E
∂y01

∂E
∂y10

∂E
∂y11

∂E
∂y20

∂E
∂y21

 =
∂E

∂Y
=

1 0
0 −1
1 1

∂E

∂b
=

[
∂E
∂b0

∂E
∂b1

]
=

[
∂E
∂y00

+ ∂E
∂y10

+ ∂E
∂y20

∂E
∂y01

+ ∂E
∂y11

+ ∂E
∂y21

]
=

2∑
i=0

[(
∂E
∂Y

)
i0

(
∂E
∂Y

)
i1

]
= sum

1 0
0 −1
1 1

 , axis = 0

 =
[
2 0

]
where, for an array X, sum(X, axis = 0) is the sum with respect to the zeroth index (i.e., i when

X = (xij)) as in the NumPy function.

35

3.7 Summary of the backpropagation formula

For a single data

� Output layer for regression: for the one half of squared error:

E =
1

2
(y−t)2,

∂E

∂y
= y−t (t: correct answer value, y: predicted

value)

� Output layer for 0-1 value 2-classification (sigmoid + cross en-

tropy):
∂E

∂x
= y − t

� Output layer for K-classification (softmax + cross entropy):
∂E

∂x
= y− t）(t: vector of one-hot representations of the correct

answer values) backpropagation for softmax with loss

� For an affine transformation layer E = E(y), y = xW + b:

∂E

∂x
=

∂E

∂y
WT ,

∂E

∂W
= xT ∂E

∂y
,

∂E

∂b
=

∂E

∂y

� When E = E(y), y =
1

1 + e−x
(sigmoid function):

∂E

∂x
= y ∗ (1− y) ∗ ∂E

∂y

� When E = E(y), y = max{0,x} (ReLU function):
∂E

∂xk
=

 ∂E
∂yk

(if xk > 0)

0 (if xk ≤ 0)
36

For a mini-batch with N of data—just remember this and you can
implement NN

� Output layer for regression: for the one half of sum of squared errors: E =
1

2

N−1∑
n=0

(yn − tn)
2,

∂E

∂y
= y − t

� Output layer for 0-1 value 2-classification (sigmoid + cross entropy):
∂E

∂x
= y − t

� Output layer for K-classification (softmax + cross entropy):
∂E

∂X
= Y − T

(For mini-batches, we usually take the average rather than the sum of the errors, so above

three are divided by N .)

� For an affine transformation layer E = E(Y), Y = XW + b:

∂E

∂X
=

∂E

∂Y
WT ,

∂E

∂W
= XT ∂E

∂Y
,

∂E

∂b
= sum

(
∂E

∂Y
, axis = 0

)

� When E = E(Y), Y =
1

1 + e−X
(sigmoid function):

∂E

∂X
= Y ∗ (1− Y) ∗ ∂E

∂Y

� When E = E(Y), Y = max{0, X} (ReLU function):
∂E

∂x
(n)
k

=

∂E

∂y
(n)
k

(if x
(n)
k > 0)

0 (if x
(n)
k ≤ 0)

37

3.8 Exercises on visualization of computational graphs with PyTorch

Notebook: 2-1 自動微分

PyTorch is a deep learning library based on Torch, developed by Facebook. (It is said to have

inherited the design philosophy of Chainer and made it faster). In 2-1, we will use PyTorch to

generate computational graphs and perform automatic differentiation. In particular, we will cre-

ate computational graphs for matrix computation and the SoftmaxWithLoss layer, and perform

automatic differentiation.

� Nodes and Edges in Computational Graphs

� Similarities and differences between PyTorch and Numpy

� Chain rule

� In order for PyTorch to perform automatic differentiation, the last output of the computa-

tional graph must be 1D

※ The last point is due to the fact that for example, if X and Y = f(X) are both matrices, then
∂Y

∂X
will be a fourth-order array.

38

4 Neural network with two layers

A neural network that consists of an input layer (layer 0), a hidden layer (layer 1), and an output

layer (layer 2) is called a 2-layer neural network. 3 layers is one way to count the number of layers,

but since no operations are performed in the input layer, the number of effective layers is 2.

Since the two-layer neural network is the most basic neural network, let’s practice to write the

code from scratch.

39

4.1 Neural network with two layers (Regression)

In a supervised regression problem with input data (a mini-batch with N data) X and corre-

sponding predicted values Ŷ , a two-layer neural network can be represented as

where when the activation function is ReLU, it holds that

X(1) = f(A(1)) = relu(A(1)) = max{A(1), 0}

and the mean squared error with the prediction Y is

E =
1

2N

N−1∑
n=0

(Ŷn − Yn)
2

40

Neural network with two layers (Regression) (continued)

On the other haand, from the formula in the previous section, we can caliculate the backproba-

gation as

where the activation function is ReLU,
∂E

∂A(1)
is given by

∂E

∂A(1)
=

∂E

∂X(1)
∗ (mask of A(1)),

(
mask of A(1) = 論理式 : A(1) > 0)

)
Here “mask” can be written in Python code as

for forward

mask1 = (a1 > 0)

x1 = mask1 * a1

for backward

da1 = dx1 * mask1

41

Stochastic gradient decent method

The parameters are updated using the stochastic gradient descent method.

Algorithm for the SGD (revisit):

Assume that we have a set of input data with correct answers.

1. Take arbitrary value for parameter W .

2. Select a few (hundreds) samples randomly (mini-batch) from the set of input data with

correct answers

3. Compute a prediction for each of the input data.

4. Calculate the derivative
∂E

∂W
, where E is the mean of the error from the correct answer in

the mini-batch and W is a parameter

5. For a real constant λ > 0, update W as

W ←W − λ
∂E

∂W

and return to 2

42

4.2 Exercises on implementing a simple two-layer neural network by Numpy

Notebooks:

� 2-2-1_シンプルな 2層のニューラルネット（回帰）
� 2-2-2_シンプルな 2層のニューラルネット（2値分類）
� 2-2-3_シンプルな 2層のニューラルネット（分類）

Please keep the following points in mind when doing exercises on simple two-layer neural networks

by Numpy.

� Design output layers for regression, binary classification, and classification problems respec-

tively.

� back propagation

� How to use Class and its parameters and methods

� Implementation of Sigmoid and ReLU

� How to use Pandas

� Accuracy on training data and on test data

43

Exercises on implementing a simple two-layer neural network by

Numpy No. 2

Following the notebook on the previous page, solve

2-2-4_Simple2Layers_YearPrediction_問題

This is an exercise that is essential for understanding this lecture. Make sure you do it.

44

5 Neural networks with multiple layers

In the previous section, we defined two-layer neural networks and trained them using the

stochastic gradient descent method. In this section, we will increase the number of layers.

45

5.1 Class of layers

� Each layer is implemented as a Python class.

� The activation function is an independent layer.

� We define the following:

– Affine layer

– Sigmoid layer

– ReLU layer

– Regression error layer

– Sigmoid and cross-entropy error layer

– Softmax and cross-entropy error layer

46

Affine layer
Parameters: Matrxix W , Vector b

Forward propagation:

Input: Matrix X

Output:
Y = XW + b

Back propagation:

Input: Matrix dout =
∂E

∂Y
Output:

∂E

∂W
= XT · dout

∂E

∂b
= Sum of dout with respect to rows (the 0-th index)

∂E

∂X
= dout ·WT

Since we have to use the variable X in the first line of this expression, we store it as self.x

during the forward calculation. The top two are stored as parameters self.dW and self.db,

and the bottom one is the return value.

47

Sigmoid layer

Parameters: None

Forward propagation:

Input: matrix X

Output:

Y = sigmoid(X) =
1

1 + e−X

Back propagation:

Input: Matrix dout =
∂E

∂Y
Output:

∂E

∂X
= dout ∗ Y ∗ (1− Y)

Since the output Y is needed for the backpropagation, it is stored as parameter self.y

during the forward calculation.

48

ReLU layer

parameters: None

Forward propagation:

Input: matrix X

Output:

Y = max{0, X} =

{
0 (X ≤ 0)

X (X > 0)

Code: Using broadcast, we can write the following

self.mask = (x > 0) # True if x>0 and False if x<=0

y = x * self.mask

Back propagation:

Input: Matrix dout =
∂E

∂Y
Output:

∂E

∂X
=

{
0 (X ≤ 0)
∂E
∂Y (X > 0)

Code: dx = dout * self.mask

49

Regression error layer

parameters: None

Forward propagation:

Input: Expected value Y , Correct value T

Output:

E =
1

2N

∑
n

(yn − tn)
2 (N is the batch size)

Code:

batch_size = y.shape[0]

loss = np.sum((y-t) ** 2)/(2 * batch_size)

Back propagation:

Input: None Output:
∂E

∂Y
=

1

N
(Y − T)

Code: dy = (self.y - self.t)/batch_size

50

Sigmoid and cross-entropy error layer

parameters: None

Forward propagation:

Input: Expected value before normalization X, Correct value T（The dimension of

each data is one)

Output:

Y = sigmoid(X)

E =
1

N
(−T log(Y)− (1− T) log(1− Y)) (N is the batch size)

Back propagation:

Input: None Output:
∂E

∂X
=

1

N
(Y − T)

51

Softmax and cross-entropy error layer

parameters: None

Forward propagation:

Input: Expected value before normalization X, Correct value T

Output:

Y = softmax(X)

E = − 1

N

∑
n

∑
k

tn,k log yn,k (N is the batch size)

Code:

y = softmax(x)

batch_size = y.shape[0]

loss = -np.sum(t * np.log(y))/batch_size

Back propagation:

Input: None Output:
∂E

∂X
=

1

N
(Y − T)

52

5.2 Exercises on Classes of layers

Notebooks:

1. 3-1-1_アファイン層.ipynb

2. 3-1-2_SoftmaxWithLoss層_演習問題.ipynb

3. 3-1-3_その他の層.ipynb

Notebook 1 defines a Class of Affine layers and uses numerical differentiation to check them.

Notebook 2 defines a Class of Softmax and Cross-Entropy Error layers and checks them using

numerical differentiation, but some code is missing, please fill in the code to complete it. Notebook

3 defines Classes for the other layers.

Note that in the implementation of the softmax function, as a countermeasure against overflow,

instead of
1

ea0 + · · ·+ eaK−1
(ea0 , · · · , eaK−1) ,

we use

1

ea0−c + · · ·+ eaK−1−c

(
ea0−c, · · · , eaK−1−c) (where c = max{a0, · · · , aK−1}).

This change does not affect the value of the function.

53

Remarks on numerical differentiation

In the exercise on the previous page, we checked the correctness of the implementation by com-

paring the backpropagation of each layer with numerical differentiation. You may consider as this

means that:

Isn’t it possible to find the gradient by doing numerical
differentiation?

The answer is yes. However, since numerical differentiation requires computing forward propagation

for each component of the weight parameter, it is very computationally demanding for models with

many parameters, and is not used except for testing implementations.

54

5.3 Exercises on multilayer neural networks

Notebook: 2-4_多層 NN(分類).ipynb

In this notebook, we will define a class of multilayer neural networks and train them on the MNIST

handwritten numbers dataset. Please pay attention to the following points.

� How to store layers: Have layer objects as lists

� How to use the (ordered) dictionary: weighted parameters are stored in an ordered dictionary

� forward propagation

� What happens when the layers become deeper?

55

Challenges in neural network optimization
In the exercise on the previous page, we learned that simply increasing the depth of the layers will

result in a failure to learn. This was the reason why neural networks were considered impractical for

a long time, even though they were invented in the 1970s. In the meantime, however, improvements

have been made little by little.

In particular, the following are basic:

� Improving the Optimization Method: Alternatives to SGD

� How to set initial values for weight parameters

� Batch Regularization: A method to normalize the output of each layer with respect to the

batch

In the next three sections, we will learn more about these so that we can learn as the layers become

deeper.

56

6 Improving the optimization method

In this section, we will learn about variation of the optimization method that improve the stochas-

tic gradient descent (SGD) method to make it easier to converge.

� Momentum: A method that introduces ”momentum.

� Nesterov’s Momentum: A method based on the ”acceleration algorithm” of the gradient

method

� AdaGrad: A method that changes the learning coefficient adaptively to the gradient

� RMSProp：An improved version of AdaGrad

� Adam：Further improved versions of AdaGrad and RMSProp (commonly used these days)

In this lecture, we will learn about Momentum and Adam.

57

Review of SGD

1. From the set of input data with correct answers, randomly select N samples (mini-batches)

x(0), · · · ,x(N−1), and set y(0), · · · , y(N−1) as the corresponding correct answers

2. For the mean of the cost function E =
1

N

N−1∑
n=0

E
(
f(x(n); θ), y(n)

)
, calculate the gradient

∇θE =
∂E

∂θ

with respect to the parameter θ

3. Update Parameter θ as

θ ← θ − λ
∂E

∂θ

The first is the same for all optimization methods, but the second and third vary.

Note: In section 8.3 of [Goodfellow], the cost function is L(f(x; θ), y), which is very confusing

because it uses the same sign as the log likelihood, but the cost function is the log likelihood with

the sign reversed (if you ignore the regularization term, etc.). Parameter optimization proceeds in

the direction of minimizing the cost ≒ maximizing the likelihood.

58

Note on the magnitude of the learning coefficient

If the learning coefficient λ is too large, learning will become unstable or divergent, while if it is

too small, learning will take a long time and you will be stuck in the local optimum.

In practice, it is common to attenuate the coefficients as the learning progresses, which can be

thought of as the equivalent of looking for better parameters by looking globally with a rough mesh

at the beginning to reduce the cost function, and then looking locally with a fine mesh at the end.

Regardless of the optimization strategy, it is not possible to learn if the gradient converges to

zero or diverges. This will be discussed in the next section.

59

6.1 Momentum

Algorithm of Momentum

α：Hyperparameters satisfying 0 ≤ α < 1

v：An array with the same shape as θ and with initial values of 0: “Momentum”

Execute the following until the termination condition is satisfied:

1. Same as SGD

2. Same as SGD

3. Update Parameter θ and Momentum v as

v← αv − λ
∂E

∂θ
θ ← θ + v

Since the third can be summarized as

θ ← θ + αv − λ
∂E

∂θ
,

it is the same as SGD if α = 0.

60

Comparison of gradient descent method’s and Momentum’s time

evolution

The result of applying the Gradient Descent method and (2 and 3 in the algorithms of) Momentum

from the initial value (x, y) = (10, 1) to

f(x, y) = x2 + 100y2.

Comparison of GD’s and Momentum’s time evolution

Green: GD，Red: Momentum

61

Relationship with equations of motion — why is it called ”momen-

tum”?

Momentum can be thought as an algorithm that if one step in the algorithm is considered as one

step in time, then θ and v represent the position and the momentum of the object at time t, 1− α

represents the friction coefficient, and −λ∂E
∂θ

represents the. In fact, The similarity between

θ(t+ 1)− θ(t) = v(t+ 1)

v(t+ 1)− v(t) = −(1− α)v(t)− λ
∂E

∂θ

and the momentum

θ̇(t) = v(t)

v̇(t) = −(1− α)v(t)− λ
∂E

∂θ

may be obvious.

62

6.2 Adam

There are algorithms such as AdaGrad and RMSProp that adaptively change the learning

coefficients λ for each component of the parameters as the learning progresses.

Adam (adaptive momentum) [Kingma-Ba, 2014] is considered to be a further improvement

by applying the RMSProp idea to momentum.

However, experience shows that it is often better to force the initial learning coefficients

to be changed in the middle of the process, even for Adam.

63

Adam’s parameter update algorithm (original)

0 < β1 < 1，0 < β2 < 1: hyperparameters (β1 = 0.9，β2 = 0.999 for example)

s, r: Array of the same shape as the parameter θ with initial values of 0

s← β1s+ (1− β1)
∂E

∂θ

r← β2r+ (1− β2)
∂E

∂θ
∗ ∂E

∂θ

s̃← s

1− βt
1

r̃← r

1− βt
2

(t is the number of updates until then)

θ ← θ − α
s̃√
r̃+ ϵ

It’s complicated, and hard to explain what it means.

64

Update algorithm rewritten to be easier to implement

The initial value of λ is set to for example 0.001.

s← β1s+ (1− β1)
∂E

∂θ

r← β2r+ (1− β2)
∂E

∂θ
∗ ∂E

∂θ

λ← λ

√
1− βt

2

1− βt
1

(t is the number of updates until then)

θ ← θ − λ
s√
r+ ϵ

Example of time evolution

65

6.3 Exercises on implementation of optimization methods

Notebooks:

1. 2-5-1_最適化法.ipynb

2. 2-5-2_最適化法の NNへの適用.ipynb

Notebook 1 defines a class of optimization methods and finds the minimum value of a two-variable

quadratic function. Notebook 2 applies it to a multi-layer neural network.

In Notebook 1, there are exercises at the end. Also, please pay attention to the following points.

� Storage of parameters in the form of a dictionary with arrays as elements: for application to

NNs

� Differences in the behavior of optimization methods when applied to NNs

66

7 How to set the initial values of weight parameters

A neural network has many training parameters, and their initial values in training must be

generated randomly in advance. For example, in the case of the matrix W and the bias vector b in

the affine transform
y = xW + b,

each component of W is usually taken according to a normal distribution with mean 0 with variance

σ2, and each component of b is assumed to be zero.

However, when the network becomes somewhat deep (for example 5 layers or more), simply taking

the variance σ2 without consideration will cause the data values in the deep layers to diverge or

become close to zero (the gradient will also converge or diverge in the same way), and learning will

not proceed appropriately. In order to avoid this, the variance of the weight parameters must be

adjusted appropriately according to the structure of the network.

67

7.1 Convergence and divergence of data in the middle layers

For example, as in the following exercise, in a 5-layer network, suppose the input values from

layer 2 to layer 5 for 10000 data are represented by the following histogram.

This situation is caused by the fact that the standard deviation of the distribution of the first weight

parameter is too small, and the values converge to zero as the layers progress. On the other hand,

if the standard deviation of the parameter is too large, the values will diverge.

How do you take the standard deviation to be appropriate?

68

7.2 Parameter initialization strategy

He’s initial value

In the method called He’s initial value, named after the discoverer, when using ReLU as the

activation function, if the number of neurons in the previous layer is Nl−1, the variance of W in

the l-th layer is set as

σ2
l =

2

Nl−1

Note: In the case of convolutional layers, Nl−1 is replaced by the number of neurons of the previous

layer used as input to one neuron in the l-th layer.

Glorot-Bengio’s initial value

In the method called Glorot-Bengios initial valuewhen using the sigmoid function as the acti-

vation function, the variance of W in the l-th layer is set as σ2
l =

2

Nl−1 +Nl
.

69

Why is it good to take it this way?

When the weight parameter Wl follows a distribution with mean 0 and variance Vl, the variance

of the data is multiplied by about Nl−1 × Vl by the l-th layer, so we can say that if we take Vl as

Vl ≒
1

Nl−1
,

the variance remains the same and is propagated to the next layer.

70

7.3 Exercises on how to take initial values of parameters

Notebook: 2-6_初期値の取り方.ipynb

In this notebook, we will experiment with how data propagates through the layers and implement

He’s initial values into the classes of neural networks we have created.

Please note the followings.

� Creating histograms with Pandas

� How data is propagated through the layers

� Relationship between data propagation and learning

� The way to implement the initialization strategy

71

8 Batch normalization

Batch normalization [Ioffe, S., Szegedy, C., 2015] is a method to prevent gradient convergence

and explosion by normalizing the data for each neuron in each layer for mini-batches. In the

previous section, we considered how to take the initial values of the weight parameters, but batch

normalization normalizes the output of the layers. Batch normalization is now widely used even

though it is a relatively recently proposed method.

72

8.1 Normalization of datasets

Although we have actually used it many times already, let’s summarize dataset normalization.

For a dataset
X = [x0, x1, x2, · · · , xN−1]

The mean µ and variance V = σ2 are calculated as

µ =
1

N

N−1∑
n=0

xn

V =
1

N

N−1∑
n=0

(xn − µ)2

σ =
√
V

The operation to convert this to a dataset with mean 0 and variance 1 is as follows.

X̃ =
X − µ

σ

73

Further, we can convert it to mean β and variance γ2 by setting

˜̃X = γ ∗ X̃ + β.

10,000 sample data following the uniform distribution. Left: The original data on the [0, 1] interval,

Middle: The normalized one, Right: Transformed one to mean 2, variance 52 = 25.

74

8.2 Algorithm for batch normalization

X: output of the subject layer of shape N×K (number of data in mini-batch N , number of neurons

in layer K).

βk: array of shape (K,), average value of the new dataset, initial components are 0.

γk: array of shape (K,), standard deviation of the new dataset, initial components are 1.

Forward propagation

µk =
1

N

N−1∑
n=0

xnk

vk =
1

N

N−1∑
n=0

(xnk − µk)
2

x̃nk =
xnk − µk√

vk + ϵ

ynk = γk x̃kn + βk

where ϵ is a small quantity to prevent divergence, such as e = 10−8.

75

This transformation can be written in NumPy style as

µ = mean(X, axis = 0)

v = mean
(
(X − µ)2, axis = 0

)
X̃ =

X − µ√
v + ϵ

Y = γ ∗ X̃ + β　

Note that β and γ are K-dimensional vectors.

Batch normalization does not work well when the number of data to be evaluated is small (for

example, when the number of data is 1, Y = β). In particular, it is normal to have 1 data when

predicting. This problem can be dealt with by using the mean and variance data during training

for testing.

76

Back propagation

Backpropagation can be calculated using chain rules and computational graphs. However, it is

very complicated, so we only write the result as follows.

∂E

∂β
= sum

(
∂E

∂Y
, axis = 0

)
,

∂E

∂γ
= sum

(
X̃ ∗ ∂E

∂Y
, axis = 0

)
and

c = mean

(
∂E

∂Y
, axis = 0

)
, d = mean

(
X̃ ∗ ∂E

∂Y
, axis = 0

)

∂E

∂X
=

γ

σ

(
∂E

∂Y
− c− X̃ ∗ d

)
Here, although the array shapes are different for c, d and X̃, Y , they can be calculated by broadcast.

This formula uses the gradient
∂E

∂Y
of the error E with respect to Y to calculate

∂E

∂X
.

77

8.3 Exercises on batch normalization

Notebook: 2-7_バッチ正規化.ipynb

In this notebook, we will do some exercises on dataset normalization and implement batch normal-

ization.

Please note the followings.

� Normalizing datasets with NumPy

� What is done in batch normalization?

� Batch normalization is one of the layers

� How do we implement the difference between training and testing?

78

8.4 Exercises on optimization for deep models

Notebook: 2-8_深層モデルのための最適化.ipynb

In this notebook, we implement and experiment with optimization methods, parameter initial-

ization strategies, and batch normalization in a neural network.

Please note the followings.

� Effectiveness of each method

� How deep can the model go?

79

9 Regularization for deep models

The deeper the model of the neural network, the more likely it is to overfit. The following methods

can be used to avoid overfitting.

� Parameter norm penalty: Regularization by the norm of the weight parameter

� Dataset augmentation: Increase data by creating data that imitates the input dataset

� Noise injection for output values: Round the output values to increase robustness

� Semi-supervised learning: Use unsupervised data for training

� Early stopping: Stop learning depending on the improvement of accuracy on the evaluation

dataset

� Ensemble learning: Averaging predictions from multiple models

� Dropout: Neuron output is not used in the next layer with a certain probability

In this section, we will discuss the parameter norm penalty and dropout. The dataset extension

will be explained in another section.

80

9.1 Parameter norm penalty

In supervised machine learning, model regularization is often achieved by changing the original

cost function J of the problem to
J̃ = J + αΩ

(where α > 0) using some norm Ω for the parameters.

In the case of neural networks, for the coefficient matrix W (l) and bias vector b(l) of the lth layer

in an L-layer neural network, it is common to use only W (l) for the calculation of Ω. That is,

J̃ = J + αΩ
(
W (1), · · · ,W (L)

)
.

Although it is possible to change α for each layer, it is more usual to use a common α for the

entire model since it increases the search range for hyperparameters.

81

L2 parameter regularization

Regularization

J̃ = J + α

L∑
l=1

||W (l)||2

using the L2 norm of the coefficient matrix

Ω =

L∑
l=1

||W (l)||2 =

L∑
l=1

W (l)
(
W (l)

)T

= sum(W (l) ∗W (l))

is called L2 parameter regularization (or simply L2 regularization). In other fields, L2 regularization

is sometimes referred to as ridge regularization or Tikhonov regularization.

The partial derivative of Ω with respect to W (l) can be easily calculated as

∂Ω

∂W (l)
= 2αW (l)

82

L1 parameter regularization

Regularization

J̃ = J + α

L∑
l=1

∣∣∣W (l)
∣∣∣

using the L1 norm of the coefficient matrix

Ω =

L∑
l=1

∣∣∣W (l)
∣∣∣

(where
∣∣∣W (l)

∣∣∣ is the sum of the absolute values of all components of the matrix W (l)) is called L1

parameter regularization (or simply L1 regularization). Linear regression with L1 regularization is

also called LASSO (Least Absolute Shrinkage and Selection Operator).

The partial derivative of Ω with respect to W (l) can be calculated as

∂Ω

∂W (l)
= α sign W (l)

(where sign x is the function that takes the sign of x, and when x is a matrix, it is applied to each

of the components).

83

Sparsification effect of L1 regularization

A set of values is said to be sparse if many of the values are zero. Comparing the L2 regularization

with the L1 regularization, the L1 regularization has the effect of making the parameters sparse.

The figure below shows L2 regularization and L1 regularization for a model minimizing the objective

function f(w1, w2) = (w1 − 3)2 + 4(w2 − 6)2, where the solution of L1 regularization is w1 = 0.

L2 regularization and L1 regularization

Left: Case of adding w2
1 + w2

2 as a regularization term, Right: Case of adding 10(|w1|+ |w2|),
Black dashed line: Contour line of f , Red dashed line: Contour line of the regularized term,

Solid black line: Contour line of the regularized function

Small point: original minimum point, Large point: minimum point when regularization term is added

84

9.2 Dropout

Dropout [Srivastava, N. et al., 2014] is a technique to improve the training of neural networks. It

is a method where during training, a neuron is erased (masked) for each data in each layer where

dropout is applied at a given rate p, and during inference, no mask is applied but instead the

output value of each layer where dropout was applied is multiplied by 1−p. It is thought to imitate

ensemble learning by changing the way neurons are eliminated for each data, and is widely used to

improve generalization performance.

85

Algorithm for Dropout

p: probability of setting the output value to zero, one of the hyperparameters

Input: output of the layer XN×K (N : batch size, K: number of neurons)

Forward propagation

Mask M : Array of the same shape as X with each component taking the value 0 with probability

p and 1 with probability 1 − p, independently.

Y =

{
X ∗M (during training)

X ∗ (1− p) (during prediction)

Back propagation

∂E

∂X
=

∂E

∂Y
∗ ∂Y

∂X
=

∂E

∂Y
∗M

86

9.3 Exercises on dropout

Notebook: 2-9_ドロップアウト.ipynb

In this notebook, we will do some exercises on dropouts.

Please note the followings.

� How to implement the mask M : each component takes 0 with probability p and 1 with

probability 1− p

� Computation for back propagation

� Computation during prediction

87

9.4 Comprehensive exercises on regularization

Notebook: 2-10_正則化に関する演習.ipynb

In this notebook, we summarize the previous exercises on neural networks with batch regu-

larization, dropout, L2 regularization, and L1 regularization.

Please note the followings.

1. How to design a network to improve accuracy (this is a difficult question)

2. Why does changing the learning coefficient to a smaller value during training improve

accuracy?

Note on point 2: It is considered to be corresponding to searching for good parameters

by looking globally with a rough mesh at the beginning so that the cost function becomes

smaller, and then looking locally with a fine mesh at the end.

88

	Forward propagation in neural networks
	Forward propagation in an affine layer
	Activation function

	Design of loss function and output layer
	In case of a regression problem
	In case of a 0-1 binary classification problem
	When classifying into K types

	Backpropagation
	Stochastic gradient descent method and differentiation of errors
	Chain rule
	Exercise on the chain rule
	Computational graph
	Computational graphs for neural networks
	Exercise on backpropagation
	Summary of the backpropagation formula
	Exercises on visualization of computational graphs with PyTorch

	Neural network with two layers
	Neural network with two layers (Regression)
	Exercises on implementing a simple two-layer neural network by Numpy

	Neural networks with multiple layers
	Class of layers
	Exercises on Classes of layers
	Exercises on multilayer neural networks

	Improving the optimization method
	Momentum
	Adam
	Exercises on implementation of optimization methods

	How to set the initial values of weight parameters
	Convergence and divergence of data in the middle layers
	Parameter initialization strategy
	Exercises on how to take initial values of parameters

	Batch normalization
	Normalization of datasets
	Algorithm for batch normalization
	Exercises on batch normalization
	Exercises on optimization for deep models

	Regularization for deep models
	Parameter norm penalty
	Dropout
	Exercises on dropout
	Comprehensive exercises on regularization

