
Deep Learning: Part 3

東京海洋大学 TUMSAT

　

竹縄知之 Tomoyuki Takenawa

1

目次

1 Convolutional neural networks 5

1.1 Convolution operation . 6

1.2 Extensions for actual application . 9

1.3 Convolution operation (with channels and mini-batches) 13

1.4 Exercises on the convolution operation . 19

1.5 Pooling . 20

1.6 Exercises on pooling operations . 23

2 Implementation of convolutional neural networks 24

2.1 Convolution layer . 25

2.2 Exercises on convolution layers . 29

2.3 Pooling layer . 30

2.4 Exercises on pooling layers . 31

2.5 Exercises on implementation of convolutional neural networks 32

2.6 Exercise on the use of GPU . 33

3 Use of CNNs 34

3.1 Types of data . 35

2

3.2 Data augmentation . 36

3.3 Exercises on data augmentation . 38

3.4 Transfer of features . 39

4 Evolution of CNN 41

4.1 VGG and GooglNet . 43

4.2 Residual Networks . 45

4.3 Exercises on ResNets . 49

5 Generative models 50

5.1 Generative and discriminative models . 51

5.2 Autoencoders . 52

5.3 Deconvolution (transposed convolution) and convolutional autoencoders 53

5.4 U-Net . 56

5.5 Exercises on segmentation using autoencoders (U-Net) 57

5.6 GAN . 58

5.7 DCGAN . 63

5.8 Conditionnal GAN . 64

5.9 pix2pix . 65

5.10 Exercises on pix2pix . 67

6 General object detection—image localization, detection, and segmentation 68

3

6.1 Faster R-CNN . 69

6.2 YOLO and SSD . 72

6.3 Semantic segmentation . 74

6.4 SegNet . 77

6.5 Exercises on Mask R-CNN . 79

4

1 Convolutional neural networks

In this section, we study Convolutional Neural Networks (CNNs), which are the most basic

method of deep learning.

CNN is a neural network that is effective for 1D, 2D, and sometimes 3D grid data, and mainly

consists of ”convolutional operations” and ”pooling operations”. In this section, we use 2D image

data as an example.

In the ImageNet Large Scale Visual Recognition Competition (ILSVRC) held in 2012, a CNN-

based method called AlexNet won the competition by a wide margin over previous approaches that

used support vector machines, thus bringing deep learning to the forefront of attention.

5

1.1 Convolution operation

For a single two-dimensional data without channels

A convolution operation (or a convolution process) is an operator that, for example, for

Input X =

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Filter F =

1 1 1

2 0 1

−1 −1 0

(the gray area is the area used to calculate y00 below), calculates Y as

y00 = (1, 2, 3, 5, 6, 7, 9, 10, 11) · (1, 1, 1, 2, 0, 1,−1,−1, 0)
= 1 + 2 + 3 + 10 + 7− 9− 10 = 4

y01 = (2, 3, 4, 6, 7, 8, 10, 11, 12) · (1, 1, 1, 2, 0, 1,−1,−1, 0)
= 2 + 3 + 4 + 12 + 8− 10− 11 = 8

y10 = (5, 6, 7, 9, 10, 11, 13, 14, 15) · (1, 1, 1, 2, 0, 1,−1,−1, 0)
= 5 + 6 + 7 + 18 + 11− 13− 14 = 20

y01 = (6, 7, 8, 10, 11, 12, 12, 15, 16) · (1, 1, 1, 2, 0, 1,−1,−1, 0)
= 6 + 7 + 8 + 20 + 12− 14− 15 = 24

and thusY =
4 8

20 24
.

6

T hat is, the operation

Input X =

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Filter F =

1 1 1

2 0 1

−1 −1 0

=⇒ Y =
4 8

20 24

is done as

• y00 is the ”inner product” of the filter and the part of the same shape in the upper left corner

of X.

• y01 is the part taken from X shifted by 1 to the right.

• y10 is the one shifted downward.

• y11 is shifted down by 1 to the right by 1.

We denote convolution as

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

⊛
1 1 1

2 0 1

−1 −1 0

=
4 8

20 24

by using ⊛ symbol.

7

Formal definition and shape of the output

When the shape of the input data X is H×W and the shape of the filter F is FH×FW, the output

data Y is a matrix of shape (OH,OW) =
(
(H−FH+1), (W−FW+1)

)
whose (oh, ow) component

is

Y [oh, ow] =

FH−1∑
fh=0

FW−1∑
fw=0

X[oh + fh, ow + fw]F [fh, fw]

. Here, for an array A, A[i, j] = ai,j denotes its (i, j) component.

Characteristics of convolution operations

Sparse connectivity: Neurons in neighboring layers are more likely to be unconnected.

Parameter sharing: Use the same filter regardless of position

From these, it is possible to extract information from the image step by step.

8

1.2 Extensions for actual application

When we actually use convolution in a neural network, we use a slight extension of the basic

operations.

Bias

Adding a constant to the output result all at once is called a bias. For example,

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

⊛
1 1 1

2 0 1

−1 −1 0

+ 3 =
4 8

20 24
+ 3 =

7 11

23 27
.

9

Padding

Filling a constant (such as 0) around an input X is called padding. In the case of convolution

operations, the constant is padded with 0s of the same width. By padding, for example, it is possible

to make the output the same shape with the input.

For example, if we padded the area around it with one row of zeros, we have

0 0 0 0 0 0

0 1 2 3 4 0

0 5 6 7 8 0

0 9 10 11 12 0

0 13 14 15 16 0

0 0 0 0 0 0

⊛
1 1 1

2 0 1

−1 −1 0

=

−3 −6 −5 −9

0 4 8 −2

8 20 24 6

33 71 77 53

.

10

Strides

The number of cells to be shifted can be changed to an integer of two or more. This integer is

called the stride.

For example, if we take the stride as two in

Y =

0 0 0 0 0 0 1

0 1 2 3 4 0 1

0 5 6 7 8 0 1

0 9 10 11 12 0 1

0 13 14 15 16 0 1

0 0 0 0 0 0 1

1 1 1 1 1 1 1

⊛
1 1 1

2 0 1

−1 −1 0

,

since the filter is applied with a shift of 2 cells, the size of the output becomes 3× 3 as

Y =

−3 −5 2

8 24 18

25 43 16

.

Calculate it by yourself!

11

Formula

When the padding size is P and the stride is S, the output size is OH×OW, where

OH =
H+ 2P− FH

S
+ 1

OW =
W+ 2P− FW

S
+ 1.

Here, in the case of non-divisible, the fractional part shall be truncated. In Python like coding, this

is written as

OH = (H + 2 ∗ P− FH)//S + 1

OW = (W+ 2 ∗ P− FW)//S + 1

Problem: Show the equation above.

12

1.3 Convolution operation (with channels and mini-batches)

The convolution operation we have seen so far is an operation that takes as input a second-order

array consisting of vertical and horizontal directions. In practice, however, it is necessary to deal

with a four-order array that includes the channel direction and the direction of the mini-batch data

number. Here, channels are used to maintain the diversity of data, like RGB (Red, Green, Blue) in

color images.

13

The input/output data array has four dimensions

Let

N：Size of the minibatch
C: Number of channels of input OC: Number of channels of output
H: Height of input data FH: Height of the filter
W: Width of input data FW: Width of the filter

then shapes of input X, filter F , and output Y to the convolutional layer are

X : (N,C,H,W)

F : (OC,C,FH,FW)

Y : (N,OC,OH,OW)

respectively, where the height and the width of output are given by

OH =
H + 2P− FH

S
+ 1

OW =
W + 2P− FW

S
+ 1

(P: padding, S: stride).

14

Illustration of the dimensions of convolutional operations

15

im2col
When implementing the convolutional operation, the bottleneck is to extract the required number

of vectors of the same shape as the filter from the input X.

For example, from Input X =

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

, we need to extract arrays of shape 2×2×3×3:

X̃ =

1 2 3
5 6 7
9 10 11

2 3 4
6 7 8
10 11 12

5 6 7
9 10 11
13 14 15

6 7 8
10 11 12
14 15 16

.

A simple implementation would be to write the following using the for statement for the OW ×
OH = 2× 2 dimensions of the output.

xt = np.zeros((OH, OW, FH, FW))

for oh in range(OH):

for ow in range(OW):

xt[oh, ow, :, :] = x[oh:oh + FH, ow:ow + FW]

16

im2col (continued)

However, this method requires the for statement to be calculated OH × OW times, and when X

becomes large, the process will take a long time.

Hence, by shifting 2× 2 (shape of the output data) part of X by 3× 3 (shape of the filter) times,

we first construct an array of shape 3× 3× 2× 2:

X̂ =

1 2
5 6

2 3
6 7

3 4
7 8

5 6
9 10

6 7
10 11

7 8
11 12

9 10
13 14

10 11
14 15

11 12
15 16

and then, by arranging the numbers enclosed in squares, we extract the (0, 0) component of the

array of shape 2× 2× 3× 3.

17

im2col (continued)

The second operation is to rearrange X̂ as X̃[oh, ow, fh, fw] = X̂[fh, fw, oh, ow], so the algorithm

can be written as follows.

xh = np.zeros((FH, FW, OH, OW))

for fh in range(FH):

for fw in range(FW):

xh[fh, fw, :, :] =x[fh:fh + OH, fw:fw + OW]

xt = xh.transpose(2, 3, 0, 1) #transposition

This method is efficient because the loop of the for statement only runs FH × FW times: the

filter size. An implementation using this algorithm is called im2col.

18

1.4 Exercises on the convolution operation

Notebook: 3-1_畳み込み演算.ipynb

In this notebook, we will do an exercise on the convolution operation. Basically, we will implement

in NumPy and verify what we have shown in the slides so far. A simple problem is given at the

end.

Please note the followings.

• Implementation of im2col, especially the way to calculate X̃ and X̂.

• Handling of fourth-order arrays

• Slices of arrays

19

1.5 Pooling

Pooling is an operation that obtains second-order data with a smaller dimension from second-order

input data. Unlike convolutional operations, the filter has no parameters.

The following is an example of a MaxPooling operation of frame size 2×2 on an input X of shape

4× 4.

X =

1 2 3 4

5 6 7 8

16 15 14 13

12 11 10 9

→ Y =
6 8

16 14

The (0, 0) component ’6’ of the output Y is the maximum value of the
1 2

5 6
part ofX. Similarly,

the (0, 1) component ’8’ is the maximum value of the
3 4

7 8
part of X. The same is true for the

(1, 0) and (1, 1) components.

20

Pooling (continued)

In this way, the inner product of the filter F in the convolution operation is replaced by the

operation of ”taking the maximum value” in pooling. Also, to avoid overlapping of the parts of X

that take the maximum value, the size of the frame and the width of the stride are taken to be

equal. Thus, the frame is always a square (if the stride is also changed horizontally and vertically,

a rectangular filter is possible, but it is not often used).

In the actual calculation, it is passed through X̃ as in the convolution operation.

X =

1 2 3 4

5 6 7 8

16 15 14 13

12 11 10 9

→ X̃ =

1 2
5 6

3 4
7 8

16 15
12 11

14 13
10 9

→ Y =
6 8

14 16

21

Support for channels and mini-batches

Pooling is done on a per-channel basis. Therefore, the number of channels does not change before

and after the layer. Of course, the size of the mini-batch does not change either. Other than that,

it is almost the same as the convolutional layer.

Note: Pooling has no parameters. Max pooling with frame size S × S and convolution with filter

whose height, width and stride are S have the same output size, but differ in whether they use

learnable filters or not, and whether they sum over input channels or not. (In the case of convolution,

the filter is learnable and sums over the input channels.)

22

1.6 Exercises on pooling operations

Notebook: 3-2_プーリング演算.ipynb

In this notebook, we will do exercises on (Max) pooling operations. As in the case of convolution

operations, we will implement and verify what we have shown in the slides so far in NumPy. At

the end, there is a simple problem.

Please note the following.

• Implementation of im2col, especially how to calculate X̃ and X̂.

• Handling of fourth-order arrays

• Slicing of arrays

23

2 Implementation of convolutional neural networks

In order to implement CNN, Backpropagation in the convolutional layer should be imple-

mented as a Class.

However, Backpropagation of the convolutional layer is quite complicated.

24

2.1 Convolution layer

Backpropagation♯
Let’s consider an example with

Input X ⊛ Filter F =

x00 x01 x02 x03

x10 x11 x12 x13

x20 x21 x22 x23

x30 x31 x32 x33

⊛ f00 f01
f10 f11

=

y00 y01 y02
y10 y11 y12
y20 y21 y22

= Y

ans Error E = E(Y). Then, since x11 appears in 4 components of

Y =

x00f00 + x01f01
+x10f10 + x11f11

x01f00 + x02f01
+x11f10 + x12f11

x02f00 + x03f01
+x12f10 + x13f11

x10f00 + x11f01
+x20f10 + x21f11

x11f00 + x12f01
+x21f10 + x22f11

x12f00 + x13f01
+x22f10 + x23f11

x20f00 + x21f01
+x30f10 + x31f11

x21f00 + x22f01
+x31f10 + x32f11

x22f00 + x23f01
+x32f10 + x33f11

,

we can calculate as
∂E

∂x11
=

∂E

∂y00
f11 +

∂E

∂y01
f10 +

∂E

∂y10
f01 +

∂E

∂y11
f00.

25

Backpropagation (continued)

To simplicity, we write as
∂E

∂yij
= dyij ,

∂E

∂xij
= dxij . Similar to the above, we can calculate as

∂E

∂X
=

dy00f00 dy00f01 + dy01f00 dy01f01 + dy02f00 dy02f01
dy00f10

+dy10f00

dy00f11 + dy01f10
+dy10f01 + dy11f00

dy01f11 + dy02f10
+dy11f01 + dy12f00

dy02f11
+dy12f01

dy10f10
+dy20f00

dy10f11 + dy11f10
+dy20f01 + dy21f00

dy11f11 + dy12f10
+dy21f01 + dy22f00

dy12f11
+dy22f01

dy20f10 dy20f11 + dy21f10 dy21f11 + dy22f10 dy22f11

.

In the implementation, this calculation is done efficiently via

dX̃ =

dy00

(
f00 f01
f10 f11

)
dy01

(
f00 f01
f10 f11

)
dy02

(
f00 f01
f10 f11

)
dy10

(
f00 f01
f10 f11

)
dy11

(
f00 f01
f10 f11

)
dy12

(
f00 f01
f10 f11

)
dy20

(
f00 f01
f10 f11

)
dy21

(
f00 f01
f10 f11

)
dy22

(
f00 f01
f10 f11

) .

26

Backpropagation (continued)

Derivative with respect to parameter F : And f00 appears in 9 components of

Y =

x00f00 + x01f01
+x10f10 + x11f11

x01f00 + x02f01
+x11f10 + x12f11

x02f00 + x03f01
+x12f10 + x13f11

x10f00 + x11f01
+x20f10 + x21f11

x11f00 + x12f01
+x21f10 + x22f11

x12f00 + x13f01
+x22f10 + x23f11

x20f00 + x21f01
+x30f10 + x31f11

x21f00 + x22f01
+x31f10 + x32f11

x22f00 + x23f01
+x32f10 + x33f11

,

∂E

∂f00
= dy00x00 + dy01x01 + dy02x02

+dy10x10 + dy11x11 + dy12x12

+dy20x20 + dy21x21 + dy22x22

we can calculate as

27

Backpropagation (continued)

Similarly, we obtain

∂E

∂F
=

dy00x00 + dy01x01 + dy02x02

+dy10x10 + dy11x11 + dy12x12

+dy20x20 + dy21x21 + dy22x22

dy00x01 + dy01x02 + dy02x03

+dy10x11 + dy11x12 + dy12x13

+dy20x21 + dy21x22 + dy22x23

dy00x10 + dy01x11 + dy02x12

+dy10x20 + dy11x21 + dy12x22

+dy20x30 + dy21x31 + dy22x32

dy00x11 + dy01x12 + dy02x13

+dy10x21 + dy11x22 + dy12x23

+dy20x31 + dy21x32 + dy22x33

.

This also can be implemented more efficiently by using

dY =

dy00 dy01 dy02
dy10 dy11 dy12
dy20 dy21 dy22

と X̂ =

x00 x01 x02

x10 x11 x12

x20 x21 x22

x01 x02 x03

x11 x12 x13

x21 x22 x23

x10 x11 x12

x20 x21 x22

x30 x31 x32

x11 x12 x13

x21 x22 x23

x31 x32 x33

.

28

2.2 Exercises on convolution layers

Notebook: 3-3_畳み込み層.ipynb

In this notebook, we implement a convolution layer and compare it with numerical differentiation.

Please note the following

1. Operations on higher-order arrays

2. How to use im2col: The im2col algorithm is used in the code

3. Shapes as an array of inputs and outputs

29

2.3 Pooling layer

Backpropagation

If the propagation of Pooling layer is

X =

x00 x01 x02 x03

x10 x11 x12 x13

x20 x21 x22 x23

x30 x31 x32 x33

→ X̃ =

x00 x01

x10 x11

x02 x03

x12 x13

x20 x21

x30 x31

x22 x23

x32 x33

→ Y =
y00 y01
y10 y11

=
x11 x13

x20 x22
→ E

(the red letters are the maximum in each single block in X̃), the backpropagation is given by

dY =
dy00 dy01
dy10 dy11

→ dX̃ =

0 0
0 dy00

0 0
0 dy01

dy10 0
0 0

dy11 0
0 0

→ dX =

0 0 0 0

0 dy00 0 dy01
dy10 0 dy11 0

0 0 0 0

.

30

2.4 Exercises on pooling layers

Notebook: 3-4_プーリング層.ipynb

In this notebook, we implement a pooling layer and compare it with numerical differentiation.

Please note the following. Also, solve the problem at the end of the notebook.

1. Difference from convolution layers

2. The function that takes the maximum value of an array: numpy.max() is used

3. Differentiation of a function that takes the maximum value of an array: numpy.argmax() is

used

31

2.5 Exercises on implementation of convolutional neural networks

Notebook: 3-5-1_CNN.ipynb

In this note, we will implement convolutional neural networks using the layers we have imple-

mented so far.

Please note the following. Also, solve the problem at the end of the notebook.

1. Shapes of data arrays flowing through

2. Computational complexity (computation time)

3. Accuracy

32

2.6 Exercise on the use of GPU

Notebook: 3-5-2_CNN_GPU.ipynb

GPU

As you can see from the exercises in the previous section, the computational complexity of CNNs

is very large and the computation is time consuming. In order to solve this problem, GPU (Graphics

Processing Unit) is used for array computation instead of CPU (Central Processing Unit) which is

used for general computation. GPUs are originally designed for fast computation of 3D graphics

rendering and image processing, and they can compute arrays much faster than CPUs.

In particular, deep learning involves a lot of matrix computation, which can be accelerated by

using GPUs. In order to use GPUs for array computation, it is common to use the CUDA (Com-

pute Unified Device Architecture) platform (programming language) developed and provided by

NVIDIA.

Of course, TsnsorFlow and PyTorch also support CUDA, but there is a library called CuPy

provided by Preferred Networks (a Japanese company) that allows you to use CUDA in a similar

way to NumPy. In this exercise, we will use CuPy.

33

3 Use of CNNs

In this section, we will summarize how CNNs are used and introduce some innovations in the use

of CNNs.

By appropriately designing the output according to tasks, CNNs can be used not only for image

regression and classification, but also for general object recognition, generative modeling, recurrent

convolutional neural networks, and many other situations. Such a way of designing the output of

the network is called structured output.

34

3.1 Types of data

Depending on the type of data, the dimension (number of orders) of one data item and the

existence of channels change. The followings are typical examples. (The direction of the batch is

not counted.)

Single-channel multichannel

1D Audio waveforms, DNA sequences
Skeleton animations

(skeleton movement)

2D
Monochrome images

Fourier transformed audio data
Color images

3D
Monochrome videos

3D density data (CT scan)
Color videos

As was the case with MNIST handwritten digit data recognition, it is common to use multiple

channels in the intermediate layer even if the input is a single channel.

35

3.2 Data augmentation

A method to increase the training

data by processing the original im-

ages, for example

https://upload.wikimedia.org/wikipedia/

commons/6/6f/Silk_Way_Rally_2011.jpg

All of them are applied randomly.

Shift:

Zoom in and Zoom out:

Cut:

36

Data augmentation (continued)

Flip:

Rotate:

Brightness:

Shearing (some linear transformaton)：

However, in the case of the photo above, for example, it is unlikely that the image is upside-down,

so do not flip the image upside-down in this case. Data augmentation is intended to improve the

generalization performance of the model by making the training data’s distribution closer to the

original data’s distribution.

37

3.3 Exercises on data augmentation

Notebook: 3-6_Augmentation.ipynb

In this notebook, we train a convolutional neural network using data augmentation on a color

image dataset called Cifar10. We compare three implementations: one using NumPy-CuPy, one

using Keras-TensorFlow, and one using PyTorch.

1. Difference between accuracy on training data and accuracy on test data

2. Where is the bottleneck of computation: Convolutional operations are also computationally

demanding, but in fact data augmentation is also time-consuming because it requires pro-

cessing each image one by one. In order to avoid this, there are several ways to do this, such

as increasing the data separately from the training in advance, or increasing the data on a

different CPU in parallel with the training.

38

3.4 Transfer of features

If we have a learned model that has been trained for one task, the method of using the learned

model for another related task is called transfer learning. For example, if a model has been trained

to classify images of dogs, cats, horses, and sheep, and now we wish to add cows to the list, instead

of starting from the beginning, we can use some of the learned parameters (in this case, the layers

up to the middle) as initial values.

• Using a model trained on a task with a large amount of data for a task with only a small

amount of data available for training

• Multitask learning (learning several related tasks at the same time, such as image object

recognition and classification) is another example.

• Using a self-encoder or similar to perform unsupervised learning beforehand and then re-

training a part of the model with supervised data is another example.

39

One-shot learning and zero-shot learning

Extreme examples of transfer learning are one shot learning and zero shot learning.

One-shot learning Literally, a method of retraining only one data at a time. As shown in

the example above, this method is used when learning to classify images of dogs, cats,

horses, and sheep, and then adding cows. In order to perform one-shot learning in deep

learning, the model must be such that it originally outputs a feature representation, as

described in [G. Koch etal. “Siamese neural networks for one-shot image recognition”

ICML Deep Learning Workshop. Vol. 2. 2015.] .

Zero-shot learning By adding data other than images, such as text, to the learning process,

we can classify cows without learning images of cows, based on information such as

”as big as a horse, slightly round, no mane”.

40

4 Evolution of CNN

In the 2012 ImageNet Large Scale Visual Recognition Competition (ILSVRC), a CNN-based

method called AlexNet won the competition by a large margin, and deep learning has been attracting

attention ever since. Since then, CNNs have become the mainstream in image recognition, and new

models have been proposed every year.

Among them, Residual Networks (ResNet), the winning model of ILSVRC in 2015, introduced

”skip connections” between distant convolution layers to achieve learning with very deep networks.

http://image-net.org/challenges/talks_2017/ILSVRC2017_overview.pdf

41

Evolution of CNN (continued)

In this section, we will introduce the followings.

• VGG and GoogleNet: 2nd and 1st place in 2014 ILSVRC, respectively

• Residual Networks: skip connections are introduced to achieve deep networks

• Dense Networks: CNN with dense skip connections (note that this is not a ”Dense

Neural Networks: all connected neural network”)

• Mobile Networks: Networks with efficient convolutional operations

CNNs are widely used not only for image recognition, but also as a base network for

solving various tasks such as segmentation and object detection. CNNs are also used in

the fields of natural language processing, speech processing, game AI, etc., and occupy an

important position in neural networks.

Reference: Uchida, Yusuke, 畳み込みニューラルネットワークの最新研究動向 (～2017),

https://qiita.com/yu4u/items/7e93c454c9410c4b5427

CNN以外にも様々な正則化法の歴史がまとまっています．

42

4.1 VGG and GooglNet

VGG

VGG [Simonyan, K., Zisserman, A., 2014] is a model that has been used as a template for the CNNs

we have built in this course. As shown in the figure below, the convolutional layer and pooling layer

are stacked, and the final output is the fully connected layer.

https://github.com/scofield7419/basic_NNs_in_frameworks/blob/master/assets/4.png

43

GoogLeNet

GoogLeNet [Szegedy, C. et al., 2014] has a structure of CNNs connected by branches as shown

below; the difference with ResNet is that there are no connections that do nothing.

[Szegedy, C. et al., 2014]

44

4.2 Residual Networks

In neural networks that propagate through the layers in order, such as all-connected networks and

convolutional networks, as the layers become deeper, information such as the derivative decreases

or increases in exponential order with respect to the number of layers, and thus becomes difficult

to propagate.

For example, if the derivative is doubled for each layer, then 210 = 1024 times for 10 layers,

220 = 1, 048, 576 times for 20 layers, and so on.

Although appropriate initial values for the parameters and batch normalization have been used

to deal with this problem, when the layers become too deep (e.g., more than 30 layers counting

only all the coupled layers or convolutional layers), the information is buried in random numbers

and computational errors, and it is still difficult to communicate.

Residual Networks (ResNet) are neural networks proposed by Kaiming He et al. in 2015 to deal

with this problem by adding an ”edge” to the convolutional network that skips some layers and

conveys information [https ://arxiv.org/abs/1512.03385].

45

Structure of ResNet18

Stack several of the smallest blocks in the left diagram to make a whole.

CONV 3× 3, OC is a convolution layer with filters of shape 3× 3 and OC=C output channels.

In blocks 2, 3, and 4, the first Res block halves the image size by setting the stride to 2.

For the other convolution layers, the stride is 1 and padding is used to keep the image size unchanged.

The first convolution depends on the input data.

The output size for Global Average Pooling is (N,C).

46

Add

The ⊕ on the previous page is simply an addition layer that outputs

Z = X + Y

for inputs X and Y . The X and Y must be arrays of the same shape.

Backpropagation

Backpropagation of ⊕：Z = X + Y :

∂E

∂X
=

∂E

∂Y
=

∂E

∂Z

Backpropagation at the brunch X → X1, X2:

∂E

∂X
=

∂E

∂X1
+

∂E

∂X2

47

Typical ResNets
ResNets are classified by “number of output channels × number of small blocks” in large blocks.

type ResNet18 Resnet 34 Resnet50 Resnet101 ResNet152

Large block 1 64× 2 64× 3 b64× 3 b64× 3 b64× 3

Large block 2 128× 2 128× 4 b128× 4 b128× 4 b128× 8

Large block 3 256× 2 256× 6 b256× 6 b256× 23 b256× 36

Large block 4 512× 2 512× 3 b512× 3 b512× 3 b512× 3

Here, b62, b128, etc. are blocks called “bottleneck”.

Bottleneck bx, (x = OC):

48

4.3 Exercises on ResNets

Notebook: 3-7_ResNet.ipynb

In this notebook, we train ResNet using data augmentation on a color image dataset called

Cifar10. The implementation is done using Keras-TensorFlow.

Note that the notebook also implements Wide ResNet, which was proposed to improve perfor-

mance by increasing the number of channels in a less deep network, while ResNet was designed to

improve performance by increasing the number of layers. Wide ResNet is designed to improve per-

formance by increasing the number of channels even in networks that are not that deep. [Zagoruyko-

Komodakis, ”Wide Residual Networks”, https://arxiv.org/abs/1605.07146]

1. Generating a network using Model() in Keras

2. Save and load trained parameters

3. Visualizing the model

4. How long does it take to train?

49

5 Generative models

In this section, we will learn about neural networks called generative models. A generative model

is a model that generates new data by imitating learned data such as images and sounds.

50

5.1 Generative and discriminative models

Generative models Amodel that learns training data and generates new data similar to those data is

called a generative model. The model is trained so that the distribution of the generated data

matches the distribution of the training data (the distribution of the data is the probability

of occurrence of each individual data). Most generative models consist of 　 encoders and

decoders, where the encoders obtain a latent representation and the decoders generate new

(or the same as the input) data.

Discriminative models A model that determines whether the given data is training data or data

generated by a model is called a discriminative model.

51

5.2 Autoencoders

Autoencoder is a neural network that combines two neural networks, Encoder and Decoder, and it

is capable of grasping the characteristics of the target data by performing dimensionality reduction

by the encoder, and generating new data by adding noise to the middle layer (latent space).

The loss function of autoencoders usually uses the sum of the squared errors between the input

and output data. This helps to train the input and output data to follow the same distribution.

When the input data is a real vector with no range constraint, the identity map is often chosen as

the activation function for the output layer, and when there is a range of values, such as for image

data, the sigmoid function is used.

Autoencoders can also be used to detect anomalous values. In this case, anomaly is detected

when the difference between the input data and output data is large.

52

5.3 Deconvolution (transposed convolution) and convolutional autoencoders

Autoencoders originally consisted of a stack of affine layers (fully connected layers), but nowadays,

convolution operations are commonly used. However, the problem is that the convolution operation

makes the image size the same or smaller, not larger. Considering the purpose of autoencoders that

is to obtain a latent representation, it is necessary to reduce the image size once (where increase

in the channel direction is acceptable). Thus, an operation called ”deconvolution” or ”transposed

convolution” (the two are the same) is used.

Convolutional autoencoder

53

Decomvolution operation

For Input X =
1 2

3 4
and Filter F =

1 −1

2 1
, the decinvolution with Stride 2 fistly dilate X

as

1 2

3 4
→

0 0 0 0 0

0 1 0 2 0

0 0 0 0 0

0 3 0 4 0

0 0 0 0 0

and next calculate its conbolution with F as

0 0 0 0 0

0 1 0 2 0

0 0 0 0 0

0 3 0 4 0

0 0 0 0 0

⊛ 1 −1

2 1
=

1 2 2 4

−1 1 −2 2

3 6 4 8

−3 3 −4 4

= Y

Here, stride is a parameter that determines how much the elements of X are separated during

the dilation.

54

Decomvolution operation (continued)

When stride is one, decomvolution is as follows

1 2

3 4
→

0 0 0 0

0 1 2 0

0 3 4 0

0 0 0 0

⊛ 1 −1

2 1
=

1 4 4

2 1 10

−3 −1 4

= Y

The amount of padding around the cells is determined by the size of the target.

Note that deconvolution is not an inverse operation of convolution, since convolution of Y does

not go back to X. Rather, when convolution is written as matrix multiplication, it corresponds to

multiplying a transposed matrix, so transposed convolution is more accurate.

Also note that the number of paddings in the deconvolution is the number of paddings needed

to go from Y to X (or another matrix of the same size) in the convolution. For example, the two

examples above both have 0 padding. There is a nice animation on the following site.

https://github.com/vdumoulin/conv_arithmetic

55

5.4 U-Net

Convolutional autoencoders can be applied to the task of transforming the style of an image. For

example, a task called semantic segmentation that classifies the class of each pixel in an image. A

model called U-Net, which adds skip connections to the convolutional autoencoder, is useful for

such a task. FCN (Fully Convolutional Networks) has a similar architecture, but U-Net is simpler.

56

5.5 Exercises on segmentation using autoencoders (U-Net)

Notebook: 3-8_U-Netによるセグメンテーション.ipynb

In this notebook, we implement U-Net, a convolutional autoencoder with skip connections, using

Keras, and apply it to a task called semantic segmentation. Semantic segmentation is the task of

predicting the class to which each pixel in an image belongs.

• The class of the transpose convolution layer in Keras is Conv2DTranspose.

• How does the size of the height and width and the number of channels change for layers of

U-Net?

• Error function in semantic segmentation: cross entropy is used.

• Dataset: Identifying the left ventricle in an MRI image of the heart.

• Other applications?

57

5.6 GAN

Generative Adversarial Networks (GAN) [Goodfellow et al., 2014] is a model that alternately

trains its Generator and Discriminator. The Generator takes as input a noise z generated by

a random number and generates new data G(z). The discriminator takes either the randomly

selected training data x or the data generated by the generator x = G(z) as input and outputs the

predicted probability D(x) that it is the training data. That is, if D(x) > 0.5, it predicts that x

was the training data, and if D(x) ≤ 0.5, it predicts that x was the generated data.

https://github.com/hwalsuklee/tensorflow

-generative-model-collections

58

Learning of GANs

GAN is a model that alternately

1. trains only the discriminator with the parameters of the generator fixed;

2. trains only the generator with the parameters of the discriminator fixed.

Here, the generator is trained to generate data with a distribution that is as close as possible to

that of the training data, and the discriminator is trained to be highly accurate in discriminating

against such data.

Such learning of GAN is similar to the structure of a forger and a connoisseur competing with

each other to improve their skills in painting.

When learning is complete and the distribution Pdata(x) of the training data and the distribution

Pgen(x) of the generated data match, D(x) becomes infinitesimally close to 0.5 because identification

is impossible.

Note: For example, in the case of images, the distribution of data here refers to the probability

distribution of the occurrence of each image. For instance, there are many images of dogs, but when

we say the image of a dog, we mean the probability that each one of them appears.

59

GAN’s value function

If the correct label y for the discriminator is y = 1 when the input is training data and y = 0

when the input is generated data, then the conditional log likelihood (cross-entropy ×(−1)) of the

discriminator is
logL(D(x) | y) = y logD(x) + (1− y) log(1−D(x))

.

Therefore, the expected value of this when inputting the training data is (since y = 1)

Ex∼Pdata(x)[logD(x)] =
∑
x

Pdata(x) logD(x)

and the expected value when inputting the generated data is (since y = 0)

Ex∼Pgen(x)[log(1−D(x)] =
∑
x

Pgen(x) log(1−D(x)).

Here, since the probability that the data generated will be x = G(z) is equal to the probability

that the noise will be z, it holds that

Ex∼Pgen(x)[log(1−D(x))] = Ez∼Pnoise(z)[log(1−D(G(z)))] =
∑
z

Pnoise(z) log(1−D(G(z))).

(Actually, it is a continuous distribution, but for simplicity, I explained it as a discrete distribution.)

60

GAN’s value function (continued)

In particular, if we assume that the rate of input of training data is equal to the rate of input of

data by the generator (this is how it is taken in GAN), then the 2 times conditional log likelihood

of the discriminator is

V (D,G) = Ex∼Pdata(x)[logD(x)] + Ez∼Pnoise(z)[log(1−D(G(z))] · · · 1⃝.

V (D,G) is called the value function of GAN.

The discriminator is trained to maximize this V (D,G). Therefore, the training of the discrim-

inator can be expressed as max
D

V (D,G). On the other hand, the generator is trained to deceive

the discriminator as much as possible, that is, to minimize V (D,G). Therefore, the training of the

generator can be expressed as min
G

V (D,G). Thus, the learning of the GAN can be expressed as

min
G

max
D

V (D,G)

. Since the first term of 1⃝ is independent of the noise z and the generator G, the learning of the

generator can also be expressed as

min
G

Ez∼Pnoise(z)[log(1−D(G(z)))].

61

GAN’s value function (continued)

Note that as a solution to the problem of D(G(z)) approaching zero and the gradient for G

becoming close to zero, which prevents learning from proceeding, the training of the generator is

often changed to
min
G

Ez∼Pnoise(z)[− logD(G(z)] · · · 2⃝

, but this change in the cost function was obtained experimentally rather than theoretically [Good-

fellow, §20.10.4].

Both y = log(1− x) and y = − log x are decreasing functions.

62

5.7 DCGAN

Based on the GAN method, a model which uses convolutional neural networks as the genera-

tor and discriminator is called Deep Convolutional GAN (DCGAN). In DCGAN, there are some

improvements such as

• Use a convolution layer instead of a pooling layer;

• Use tanh as the output of the generator;

• Use Leaky ReLU function defined as

f(x) =

{
x (x > 0)

0.01x (x ≤ 0)

in the discriminator. と定義される Leaky ReLU 関数を用いる

63

5.8 Conditionnal GAN

Since GAN only imitates the distribution of the real data, even if there are several classes in the

training data, we cannot control which class of data is generated. In Conditional GAN, the same

condition c is given to both the generator and the discriminator, so that the discriminator is trained

to judge the data as real, i.e., D(G(z, c), c) > 0.5, only when the data to be discriminated is similar

to the real data with condition c (e.g., class name).

https://github.com/hwalsuklee/tensorflow-generative-model-collections

64

5.9 pix2pix

Many of you may be acquainted with pix2pix as it is often featured in the news. Pix2pix is

a neural network model that performs style transformation on input images using an adversarial

generative network (GAN) [Isola, P. et al., 2017]. It has been applied to automatic colorization

of line drawings, style transformation of paintings (e.g., Van Gogh-style painting), conversion of

gray-scale images into RGB images, and conversion of aerial photographs into map images, etc.

[Isola, P. et al., 2017]

When trying to colorize a line drawing, the generator tries to colorize the input line drawing. In the

discriminator, a set of line drawings and a colored image are input. The input colored image can be either

the one generated by the generator or the correct image. The discriminator is trained to distinguish

between the two input images.

65

Architecture of the generator

The network of the pix2pix generator uses a network model called U-Net. U-Net is a network

that uses convolution layers, deconvolution layers, and skip connections as shown in the figure. The

skip connection is effective in sharing edge positions between input and output images. Note that

pix2pix uses U-Net for dimensionality reduction, so it does not use noise for generation, unlike

regular GANs. In addition, the training of the generator uses the error function of the GAN plus

the L1 error between the correct image and the generated image.

Encoder-decoder model and U-Net [Isola et all, 2017]

Implementation example by the original proposers https://github.com/junyanz/pytorch-

CycleGAN-and-pix2pix

66

5.10 Exercises on pix2pix

Notebook: 6-2_pix2pix-Keras.ipynb

In this notebook, we use Keras to implement pix2pix and tackle the task of coloring a black and

white image. This notebook is a rewrite of the code by Phillip Isola, one of the original proposers,

for TensorFlow2.

• Anyway, let’s try using pix2pix, the fruits of deep learning.

• Try other style conversion tasks if you have time.

67

6 General object detection—image localization, detection, and

segmentation

The task of detecting the position and class of a given object (person, car, product, etc.) in a

given image is called general object detection. Among them, the following tasks are often used.

Classification Identify the class of objects in the image.

Localization Identify the rectangle surrounding the object of interest.

Detection Identify the class and rectangle position of the target object, if it exists.

Semantic segmentation Grasp the shape of an object by assigning to which object class each pixel

in the image belongs.

Faster R-CNN

https://arxiv.org/abs/1506.01497

68

6.1 Faster R-CNN

R-CNN
R-CNN (Regions with CNN features) is a general object detection algorithm, which works as

follows.

1. Find object candidate regions (rectangular position candidates) using the existing method

called Selective Search (about 2000).

2. Resize all the images of the object candidate regions to a certain size and apply CNN to

extract features.

3. Use the extracted features to perform category identification by multiple SVMs (Support

Vector Machines) and estimate the rectangular position more accurately by regression.

Although R-CNNs are highly accurate, they have the disadvantage that each of the above steps

needs to be trained separately, and they are very time-consuming to run because CNN processing

is performed for each candidate region.

69

Faster R-CNN
Faster R-CNN [S. Ren et al. 2015] is an algorithm that improves on R-CNN and has the following

characteristics.

• Instead of Selective Search, candidate regions are proposed from the features obtained by

CNN on the input image using a learnable operation (Regional Proposal Network). The can-

didate regions are transformed into regions of the same size by a pooling operation called RoI

pooling, and the class and rectangular position are estimated respectively. This eliminates

the necessity of performing a CNN for each candidate region.

• By using multi-task learning, where the cost is the sum of the costs at all stages, including the

selection of candidate regions, it is possible to perform end-to-end learning (i.e., to optimize

the entire model in a single learning session).

Note: The Fast R-CNN proposed just before Faster R-CNN is a model with almost the same

architecture, but it uses the existing Selective Search to suggest candidate regions from features,

and this part needs to be trained separately.

70

Faster R-CNN

https://arxiv.org/abs/1506.01497

71

6.2 YOLO and SSD

YOLO

YOLO (You Only Look Once) [Redmon, J. et al., 2015] implements a fast algorithm using

1. Divide the entire image into a grid in advance;

2. Estimate one class for each cell;

3. Use it to find the rectangular region.

However, it is not suitable for processing images with many objects, since a cell can not belong to

more than two rectangular areas.

72

SSD

SSD (Single Shot MultiBox Detector) [Liu, W. et al., 2015] is an algorithm that can recognize

objects of various scales by proposing rectangular regions for feature maps in each layer of the

CNN, while being faster than Faster R-CNN by using an algorithm similar to YOLO. It is also

capable of end-to-end learning, and is often used as much as Faster R-CNN.

Architecture of SSD

X. Huang et al. Animals 2019, 9(7), 470; https://doi.org/10.3390/ani9070470

Reference:

https://www.slideshare.net/takanoriogata1121/ssd-single-shot-multibox-detector-eccv2016

73

6.3 Semantic segmentation

For a given image, the task of classifying to which class each pixel in the image belongs is called

semantic segmentation. This is important in the fields of autonomous vehicles and medical imaging.

The following are two typical deep learning models.

FCN Fully Convolutional Networks: similar architecture with U-Net;

SegNet Transfer the pooling index from the encoder to the decoder.

https://mi.eng.cam.ac.uk/projects/segnet/

74

FCN: Fully Convolutional Networks

In models prior to FCN, only images of fixed size could be handled due to the presence of fully

connected layers in the network, but FCN uses convolutional layers with a filter size of 1×1 instead

of fully connected layers, thus eliminating the restriction of fixed image size.

Architecture of FCN https://arxiv.org/abs/1411.4038

75

Decoder of FCN

FCN classifies the original image pixel by pixel by classifying each pixel of the feature map

obtained by applying CNN and upsampling the result using deconvolution. By using the results of

each layer of the CNN as a feature map through skip connections, it can identify fine boundaries.

Upsampling of FCN https://arxiv.org/abs/1411.4038

76

6.4 SegNet

Among the various architectures for semantic segmentation that have been proposed since FCN,

the SegNet model aims to improve the efficiency of memory usage by reducing the size of the

information passed from the encoder to the decoder.

Comparing to in the case of FCN, the information passed from the encoder to the decoder is as

follows.

FCN Feature maps at each stage

SegNetThe final feature map and the index that took the maximum value in each max

spooling layer

Architecture of SegNet https://arxiv.org/abs/1505.07293

77

6.5 Exercises on Mask R-CNN

Notebook: 3-10_MaskRCNN.ipynb

Mask RCNN is basically a model for general object recognition that adds a semantic segmentation

task to Faster RCNN, but with an improved way of proposing bounding boxes in the middle layer.

[K. He, et al. 2017]. In this notebook, we try to use a library that implements Mask RCNN using

Keras for video processing. The implementation we use here is provided by matterport on github.

Architecture of Mask R-CNN

https://medium.com/

@jonathan_hui/image-segmentation-

with-mask-r-cnn-ebe6d793272

78

	Convolutional neural networks
	Convolution operation
	Extensions for actual application
	Convolution operation (with channels and mini-batches)
	Exercises on the convolution operation
	Pooling
	Exercises on pooling operations

	Implementation of convolutional neural networks
	Convolution layer
	Exercises on convolution layers
	Pooling layer
	Exercises on pooling layers
	Exercises on implementation of convolutional neural networks
	Exercise on the use of GPU

	Use of CNNs
	Types of data
	Data augmentation
	Exercises on data augmentation
	Transfer of features

	Evolution of CNN
	VGG and GooglNet
	Residual Networks
	Exercises on ResNets

	Generative models
	Generative and discriminative models
	Autoencoders
	Deconvolution (transposed convolution) and convolutional autoencoders
	U-Net
	Exercises on segmentation using autoencoders (U-Net)
	GAN
	DCGAN
	Conditionnal GAN
	pix2pix
	Exercises on pix2pix

	General object detection―image localization, detection, and segmentation
	Faster R-CNN
	YOLO and SSD
	Semantic segmentation
	SegNet
	Exercises on Mask R-CNN

