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Abstract

A 3 dimensional analogue of Sakai’s theory concerning the relation between rational
surfaces and discrete Painlevé equations is studied. For a family of rational varieties
obtained by blow-ups at 8 points in general position in P3, we define its symmetry
group using the inner product that is associated with the intersection numbers and
show that the group is isomorphic to the Weyl group of type E(1)

7 . By parametrizing
the configuration space by means of elliptic curves, the action of the Weyl group and
the dynamical system associated with a translation are explicitly described. As a
result, it is found that the action of the Weyl group on P3 preserves a one parameter
family of quadratic surfaces and that it can therefore be reduced to the action on
P

1 × P1.

1 Introduction

Relations between Painlevé equations and rational surfaces were first studied by Okamoto[12].
He showed that for each Painlevé equation, by elimination of the singularity of the equa-
tion, the solutions can be regularly extended into a family of rational surfaces. Such a
family of rational surfaces is called the space of initial conditions for the Painlevé equation.
Conversely, it is clarified by Saito and Takano et al. [16, 14] that for a given space of initial
conditions the Hamilton system of a Painlevé equation can be determined.

Since the singularity confinement method was introduced by Grammaticos et al. [6],
the discrete Painlevé equations have been studied extensively ([13] for example). Empha-
sizing the fact that each discrete Painlevé equation preserves a family of rational surfaces,
Sakai constructed the discrete Painlevé equations from families of rational surfaces (called
generalized Halphen surfaces) and subsequently classified them. Such a family of ratio-
nal surfaces is called the space of initial conditions for that discrete Painlevé equation.
A generalized Halphen surface can be seen to be isomorphic to a surface obtained by 9
blow-ups from P

2. Sakai’s classification also shows that the spaces of initial conditions
for the discrete Painlevé equations include those for continuous ones. Furthermore, the
largest symmetry arises when the 9 points are in general position; all other symmetries
are in the case where the points are in some special position. Each Painlevé equation is
obtained as a translation associated with the corresponding affine Weyl group (extended
by the automorphisms of the associated Dynkin diagram). Moreover, if the space of initial
conditions is that of a continuous one, its Weyl group coincides with the group of that
equation’s Bäcklund transformations.

The aforementioned results all concern non-autonomous dynamical systems. There
also exist some studies that deal with autonomous ones. For example, in the continuous
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case Adler and van Moerbeke have studied Painlevé manifolds [1] and in the discrete case
various authors have studied the relations between dynamical systems and the automor-
phism groups of manifolds ([4, 5] for example).

Sakai’s procedure for describing discrete Painlevé equations is closely related to the
studies on the Cremona isometry carried out by Coble et al. [2, 3] and these two approaches
coincide in the case of 9 points in general position. Whereas in the case of points in
general position the Weyl group is generated by the standard Cremona transformation
and exchanges of the points, in the degenerate case its generators can be constructed by
changing the blow-down structures. Concerning this point one has to cite the pioneering
research by Looijenga [10].

Dolgachev and Ortland also studied the case of 3 (or higher) -dimensional rational
varieties [3] : here (for example) the affine Weyl group of type E(1)

7 appears in the case
where 8 generic points in P3 are blown-up. If the number of points is less than 8 the Weyl
group is finite and it is indefinite if the number of points is larger than 8. However, in the
3-dimensional case the action of each element of the Weyl group cannot be lifted to an
isomorphism between rational varieties, obtained by blow-ups at some points. Dolgachev
and Ortland call such a map a pseudo-isomorphism.

In this paper we study the symmetry, parametrization of the configuration space and
the associated discrete dynamical systems for the family of rational varieties obtained by
blow-ups at 8 ordered points in general position in P3.

In section 2, we reconstruct the argument of Dolgachev and Ortland. We consider
birational automorphisms of the family of varieties such that (i) each of them acts as an
automorphism on the configuration space (ii) for rational varieties on the configuration
space it preserves the “inner product” of the Picard group Pic(X). Here, the inner product
is defined by using the intersection numbers and the canonical divisor KX as (D,D′) :=
D ·D′ · (−1

2KX) for D,D′ ∈ Pic(X). It is shown that the resulting symmetry group is the
Weyl group of type E(1)

7 . This group coincides with that of Dolgachev and Ortland.
In section 3, parametrization of the configuration space is discussed. Although there is

a straightforward parametrization, it is difficult to describe the action of the Weyl group
by using this and to see the properties of the resulting dynamical systems. In this paper
we therefore use a parametrization in terms of elliptic curves. Quadratic surfaces passing
through the 8 points we consider form at least one parameter family. Here the 8 points
are on the intersection curve of the pencil of surfaces. Normalizing the pencil, one obtains
a parametrization of the configuration space.

In section 4, we describe the action of the Weyl group obtained in section 2 in nor-
malized coordinates. In order to calculate the concrete action we apply a 3-dimensional
analogue of the period map which is introduced by Looijenga [10] and Sakai [15] for sur-
faces.

In section 5, we construct a birational dynamical system in P3 by using the action
obtained in section 4. Such systems are obtained corresponding to translations associated
to the Weyl group. We describe one of them explicitly.

Is section 6, it is shown that the action of the Weyl group preserves each member of the
pencil of quadratic surfaces and that it can therefore be reduced to an action on P1 × P1.
The reduced action of the Weyl group of type E(1)

7 on P1×P1 coincides with the action of
a sub-group of the Weyl group of type E(1)

8 , which is the symmetry of the family of (the
most) general Halphen surfaces.

Section 7 is devoted to conclusions and discussions.
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2 Symmetry

Let X(4, 8) denote the configuration space of ordered 8 points in P3(C) such that every 4
points are not on the same plane:

PGL(4,C)

∖


x1 x1 · · · x8

y1 y2 · · · y8

z1 z3 · · · z8

w1 w4 · · · w8

 ∈ (C4)8

∣∣∣∣∣∣∣∣
every 4× 4
minor determinant
is nonzero


/

(C×)8, (1)

where two configurations are identified if one can be transformed to the other by a pro-
jective transformation. We also denote the 3-dimensional rational variety obtained by
successive blowing-up at distinct 8 points Pi(xi : yi : zi : wi) by XP1,···,P8 (or simply by X)
and the family of all XP1,···,P8 ’s, where {P1, · · · , P8} ∈ X(4, 8), by {XP1,···,P8}. X(4, 8) is
called the parameter space.

Let Pic(X) be the Picard group of the variety X = XP1,···,P8 (the additive group of
isomorphism classes of invertible sheaves ' the additive group of linear equivalence classes
of divisors). We have

Pic(X) = ZE ⊕ ZE1 ⊕ ZE2 ⊕ ZE3 ⊕ ZE4 ⊕ ZE5 ⊕ ZE6 ⊕ ZE7 ⊕ ZE8, (2)
KX = −4E + 2(E1 + E2 + E3 + E4 + E5 + E6 + E7 + E8),

where E denotes the total transform of the divisor class of the plane in P3 and Ei denotes
the total transform of the exceptional divisor generated by the blow-up at Pi. We often
identify the lattices Pic(XP1,···,P8)’s by (2). For the following argument we define δ as

δ := −1
2
KX (3)

and the inner product of Pic(X) as

(D,D′) := D ·D′ · (−1
2
KX)

for D,D′ ∈ Pic(X), where for D,D′, D′′ ∈ Pic(X), D · D′ · D′′ denotes the intersection
number Pic(X)× Pic(X)× Pic(X)→ Z.

We consider the group (written as Gr({X})) of birational transformations on the fam-
ily {XP1,···,P8} such that
i) ϕ : X(4, 8)→ X(4, 8) is an automorphism; here, we denote ϕ({P1, · · · , P8}) by {P ′1, · · · , P ′8};
ii) for any {P1, · · · , P8} ∈ X(4, 8) the map ϕ : XP1,···,P8 99K XP ′1,···,P ′8 is a birational
map preserving the inner product of Pic(X), i.e. (ϕ∗(D), ϕ∗(D′)) = (D,D′) for any
D,D′ ∈ Pic(XP1,···,P8), where ϕ∗ : Pic(XP1,···,P8) → Pic(XP ′1,···,P ′8) is the push-forard ac-
tion of ϕ.

Theorem 2.1. Gr({X}) is the affine Weyl group of type E(1)
7 .

Remark 2.1. Dolgachev and Ortland [3] have shown that the affine Weyl group of type
E

(1)
7 acts on {XP1,···,P8} and satisfies i) and ii)’: for any {P1, · · · , P8} ∈ X(4, 8) the map

ϕ : XP1,···,P8 99K XP ′1,···,P ′8 is a pseudo-isomorphism, i.e. isomorphism in co-dimension one.
Moreover, those maps act on Pic(X) and its Poincaré dual as the root lattice Q and the
coroot lattice Q̌ respectively. Hence we have an isomorphism ν : Q → Q̌ and the corre-
sponding biliniear form on Q. However, to author’s knowledge, it has not been proved
that there is no maps satisfying i) and ii)’ other than the affine Weyl group of type E(1)

7 .
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Moreover, without concrete birational maps, it is difficult to find root and coroot bases
and the isomorphism ν. Although we either do not prove the uniqueness in the category
of pseudo-isomorphisms, our method makes it possible to find the symmetries and the
bilinear forms on Pic(X) ⊃ Q from some families of rational varieties themselves.

Before the proof we describe some formulae for the intersection numbers. For elements
in Pic(X) the intersection numbers are given by

E · E · E = 1, E · E · Ei = 0,
E · Ei · Ei = 0, Ei · Ei · Ei = 1,
Ei · Ej ·D = 0 (i 6= j, ∀D ∈ Pic(X)) .

Hence the inner product is given by

(E,E) = 2, (E,Ei) = 0, (Ei, Ej) = −δi,j . (4)

Lemma 2.1. If a birational map ϕ : XP1,···,P8 99K XP ′1,···,P ′8 preserves the inner product,
then ϕ∗ : Pic(XP1,···,P8)→ Pic(XP ′1,···,P ′8) is an isomorphism of lattices.

Proof. Note that ϕ∗ (= (ϕ−1)∗) can be considered to be a linear transformation to itself.
Assume that there exists a nonzero divisor D ∈ Pic(XP1,···,P8) such that ϕ∗(D) = 0. Since
D is nonzero, there exists a divisor D′ ∈ Pic(XP1,···,P8) such that (D,D′) 6= 0. On the
other hand, ϕ∗(D) = 0 and hence (ϕ∗(D), ϕ∗(D′)) = 0, which contradicts the assumption
that ϕ preserves the inner product.

By this lemma, each ϕ∗ : Pic(XP1,···,P8) → Pic(XP ′1,···,P ′8) is an isomorphism and pre-
serves
a) the inner product;
b) the anti-canonical divisor −KX , i.e. ϕ∗(−KXP1,···,P8

) = −KXP ′1,···,P
′
8
, since ϕ is a pseudo-

isomorphism;
c) the effectiveness of divisors.

We call an automorphism of Pic(X) which preserves a), b), c) a (3-dimensional) Cre-
mona isometry.

Proof of Theorem 2.1
As in the 2-dimensional case, Theorem 2.1 is proved by investigating the group of

Cremona isometries and realizing the corresponding birational transformations.
Let ϕ ∈ Gr({X}). Since ϕ∗ preserves KX and the inner product, it also preserves the

orthogonal complement of KX

Q(α) :=< α0, α1, · · · , α7 >Q,

where

α0 = E1 − E2, α1 = E2 − E3, · · · , α6 = E7 − E8,

α7 = E − E1 − E2 − E3 − E4. (5)

Claim 2.1. The basis < α0, α1, · · · , α7 > of the linear space K⊥X generates the lattice
< α0, α1, · · · , α7 >Z, i.e.

< α0, α1, · · · , α7 >Q ∩Pic(X) =< α0, α1, · · · , α7 >Z

holds.
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Proof. We show that the left hand side includes the right hand side. Let a0α0+· · ·+a7α7 ∈
Pic(X). Since the coefficient of E8 is an integer, a6 is also an integer. Since the coefficient
of E7 is an integer, −a5 + a6 is also an integer, and so is a5. Along the same line all ai’s
are integers.

From this claim, ϕ∗ is an automorphism of the sub-lattice Q(α) and preserves the inner
product. The matrix defined by using the inner product as

(ci,j)i,j := 2
(αi, αj)
(αi, αi)

(6)

is the affine Cartan matrix of type E(1)
7 . We denote the affine Weyl group generated by

rj(α) := rαj (α) = α− 2
(αj , α)
(αj , αj)

αj (α ∈ Q(α)) (7)

(i = 0, 1, · · · , 7) by W (E(1)
7 ). By the following proposition by Kac we have the fact that the

d d d d d d d
d

α0 α1 α2 α3 α4 α5 α6

α7

Figure 1: the Dynkin diagram of type E(1)
7

group of isometries of Q(α) each of which preserves the inner product is ±Aut(Dynkin)n
W (E(1)

7 ) (which is written as ±W̃ ).

Proposition 2.1. ([8] §5.10) If the generalized Cartan Matrix cij is a symmetric matrix
of finite, affine, or hyperbolic type, then the group of all automorphisms of Q(α) preserving
the bilinear form is ±W̃ .

Note that

δ = −1
2
KX = α0 + 2α1 + 3α2 + 4α3 + 3α4 + 2α5 + α6 + 2α7 (8)

is preserved by W (E(1)
7 ) and the automorphism of the Dynkin diagram. In our case, since

ϕ∗ preserves the anti-canonical divisor −KX , each element of −Aut(Dynkin) nW (E(1)
7 )

is not a Cremona isometry.

Claim 2.2. The automorphism of the Dynkin diagram is not a Cremona isometry.

Proof. There exists only one automorphism of the Dynkin diagram, which is the involution
exchanging α0, α1, α2 and α6, α5, α4 respectively.

Denoting the actions of these involutions on Pic(X) by D 7→ D, we have

E = E + 3E1 −E2 − E3 − E4 − E5 − E6 − E7 − E8 + 4E8

E1 = E1 −E8 + E8

E2 = E1 −E7 + E8

...
E7 = E1 −E2 + E8.
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Set E8 = eE + e1E1 + · · ·+ e8E8. From

(E,E8) = (E,E8) = 2e− 3e1 + e2 + e3 + e4 + e5 + e6 + e7 + e8 − 4 = 0
(E1, E8) = (E1, E8) = −e1 + e8 − 1 = 0

...
(E7, E8) = (E7, E8) = −e1 + e2 − 1 = 0,

we have e = −2e1 − 3/2, which contradicts the assumption that e is an integer.

Now we have the fact that the actions of Cremona isometries on Q(α) are included by
W (E(1)

7 ).

Claim 2.3. The action of W (E(1)
7 ) are uniquely extended onto Pic(X) as

rj(D) = D − 2
(αj , D)
(αj , αj)

αj (D ∈ Pic(X)). (9)

Proof. Let s and s′ be Cremona isometries such that the action of s is identical to that of
s′ on Q(α). We show s′ ◦ s−1 = Identity on Pic(X). Since {E1, α0, α1, · · · , α7} is a basis
of Pic(X), we can set

s′ ◦ s−1(E1) = e1E1 + a0α0 + a1α1 + · · ·+ a7α7.

From (s′ ◦ s−1(E1), δ) = (E1, δ) = 1 and (αi, δ) = 0 (for ∀i), we have e1 = 1. Since

(s′ ◦ s−1(E1), αi) = (E1, αi)⇐⇒ (s′ ◦ s−1(E1)− E1, αi) = 0

holds,
−(ci,j)0≤i,j≤7a = 0

holds, where (ci,j)0≤i,j≤7 is the Cartan matrix of type E
(1)
7 (6). Hence we have s′ ◦

s−1(E1) = E1 + zδ (z ∈ Z). Finally, from (s′ ◦ s−1(E1), s′ ◦ s−1(E1)) = −1 + 2z = −1, we
have z = 0. Hence it has been shown that s′ ◦ s−1 does not change the basis of Pic(X)
and therefore s′ ◦ s−1 = Identity.

By this claim, the actions of simple reflections on Pic(X) are given by

ri : Ei+1 7→ Ei+2

Ei+2 7→ Ei+1 (for 0 ≤ i ≤ 6)
r7 : E 7→ 3E − 2E1 − 2E2 − 2E3 − 2E4

Ek 7→ E − E1 − E2 − E3 − E4 +Ek (for 1 ≤ k ≤ 4),

where preserved elements are omitted. Finally, we have the claim of the theorem by the
following claim.

Claim 2.4. The action of each element of W (E(1)
7 ) on Pic(X) is uniquely realized as an

element of Gr({X}).

Proof. It is enough to show for the simple reflections ri’s.
i) in the case of 0 ≤ i ≤ 6. Since E 7→ E, the action on P3 is linear. This is nothing but
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the projective transformation PGL(4). Hence, without loss of generality, we can assume
that the action is the identity. Since ri exchanges Ei+1 and Ei+2, we have

ri : ((P1, · · · , Pi+1, Pi+2, · · · , P8); x) ∈ X(4.8)× P3

7→ ((P1, · · · , Pi+2, Pi+1, · · · , P8); x). (10)

Here, we have described the action ri : XP1,...,P8 → XP ′1,...,P
′
8

in terms of the coordinate x
of P3.
ii) in the case of r7. Using PGL(4), we may assume

P1 = P ′1 = (1 : 0 : 0 : 0), · · · , P4 = P ′4 = (0 : 0 : 0 : 1) (11)

without loss of generality. Since E 7→ 3E − 2E1 − 2E2 − 2E3 − 2E4, the action on
P

3: (x : y : z : w) 7→ (x′ : y′ : z′ : w′) is in the 3rd degree. Moreover, from E1 ↔
E − E2 − E3 − E4, we have (1 : 0 : 0 : 0) ↔ x′ = 0. Since similar facts hold for
the case of E2, E3 and E4, considering the degree with respect to x, y, z, w, we have
(x′ : y′ : z′ : w′) = (ayzw : bzwx : cwxy : dxyz), where a, b, c, d ∈ C×. Furthermore,
we can normalize it as a = b = c = d = 1 preserving (11). This is nothing but the
standard Cremona transformation of P3. Hence the action of r7 on {X} is given by the
composition of maps:

((P1, P2, P3, P4), (P5, P6, P7, P8); x) ∈ X(4.8)× P3

7→




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , P−1
1234(P5, P6, P7, P8);P−1

1234


x
y
z
w




:= ((P ′1, · · · , P ′8); x′)

7→




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,


x′2,5x

′
3,5x

′
4,5 · · · x′2,8x

′
3,8x

′
4,8

x′3,5x
′
4,5x

′
1,5 · · · x′3,8x

′
4,8x

′
1,8

x′4,5x
′
1,5x

′
2,5 · · · x′4,8x

′
1,8x

′
2,8

x′1,5x
′
2,5x

′
3,5 · · · x′1,8x

′
2,8x

′
3,8

 ;


y′z′x′

z′w′x′

w′x′y′

x′y′z′


 , (12)

where P1234 denotes the square matrix (P1, P2, P3, P4).

3 Parametrization of the configuration space

In this section we discuss parametrization of the configuration space X(4, 8) by PGL(4),
i.e. how to choose representative elements. Notice that without a good parametrization it
is difficult to see the concrete action of the group and properties of associated dynamical
systems. For example, although X(4, 8) is easily parametrized as

1 0 0 0 1 1 1 1
0 1 0 0 1 y6 y7 y8

0 0 1 0 1 z6 z7 z8

0 0 0 1 1 w6 w7 w8

 , (13)

the action of the Weyl group on this coordinate becomes complicated. We parametrize it
in terms of elliptic curves.

Note the following lemma.
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Lemma 3.1. Let P1, P2, · · · , P8 be 8 points in P3. Quadratic surfaces passing through
P1, P2, · · · , P8 form at least one parameter family.

Proof. It is clear from the fact that quadratic surfaces passing through P1, P2, · · · , P8 and
arbitrary point P9 in P3 is given by the equation∣∣∣∣∣∣∣∣∣

x2 y2 z2 w2 xy yz zw wx xz yw
x2

1 y2
1 z2

1 w2
1 x1y1 y1z1 z1w1 w1x1 x1z1 y1w1

...
x2

9 y2
9 z2

9 w2
9 x9y9 y9z9 z9w9 w9x9 x9z9 y9w9

∣∣∣∣∣∣∣∣∣ = 0,

where Pi = (xi : yi : zi : wi) (if the left hand side is identically zero, exchange one of the
points for a generic point).

The pencil of quadratic surfaces passing through P1, P2, · · · , P8 can be written as

xt(αA+ βB)x = 0 (x ∈ P3) (14)

by 4×4 complex symmetric matrices A,B and (α : β) ∈ P1. Normalizing (14) by PGL(4)
(cf. [18]), we have the following theorem, which provides a parametrization of X(4, 8).
The proof of this theorem will be given in the last part of this section.

Theorem 3.1. Each element of X(4, 8) can be parametrized so that P1, P2, · · · , P8 are on
the intersection curve(s) of one of the following 3 type pencils of quadratic surfaces.
(i)

(E) x2 − zw = 0
(F ) y2 − 4xw + g2xz + g3z

2 = 0

(ii)

xy − zw = 0
xw − z2 = 0

(iii)

xy − zw = 0
4x2 − 2zw + w2 = 0 .

Moreover,

(i-1) in the case where the intersection curve is non-singular (∆ = 27g2
3 − g3

2 6= 0), Pi can
be parameterized as

Pi = (℘(ui) : ℘′(ui) : 1 : ℘2(ui)), ui ∈ C/(Z+ Zτ), (15)

where ℘(u) is Wierstrass ℘ function with the periods (1, τ).
(i-2) in the case where ∆ = 0 and g2 6= 0, the intersection curve can be renormalized to
the intersection curve of

x2 − zw = 0
y2 − 4w(x+ hz) = 0
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and Pi can be parameterized as

Pi =

(
4hui

(1− ui)2
:
−8h3/2ui(1 + ui)

(1− ui)3
: 1 :

(4hui)2

(1− ui)4

)
, ui ∈ P1 \ {0,∞} . (16)

(i-3) in the case where g2 = g3 = 0, the intersection curve can be renormalized to the
intersection curve of

x2 − zw = 0
y2 − 4xw = 0

and Pi can be parameterized as

Pi =
(
u−2
i : −2u−3

i : 1 : u−4
i

)
, ui ∈ P1 \ {∞} . (17)

(ii) the intersection consists of 2 curves {(0 : s : 0 : t) | s : t ∈ P1} and {(s3 : t3 : s2t :
st2) | s : t ∈ P1}.
(iii) the intersection consists of 2 curves {(0 : s : 0 : t) | s : t ∈ P1} and {(2st2 : s(s2 +4t2) :
t(s2 + 4t2) : 2s2t) | s : t ∈ P1}.

Remark 3.1. The parameterizations of (i-2) and (i-3) of Theorem 3.1 are chosen so that
the period map becomes simple.

From the proof in case (i-1) of this theorem we have the following corollary.

Corollary 3.1. If the intersection curve of surfaces passing through P1, P2, · · · , P8 is non
singular, X(4, 8) can be parametrized as P1, P2, · · · , P8 are on the intersection curve of 2
surfaces

θ2
00x

2 − θ2
01y

2 − θ2
10z

2 = 0
θ2

10y
2 − θ2

01z
2 − θ2

00w
2 = 0, (18)

where we write θij := θij(0) for the theta function θij(u) with the fundamental periods
(1, τ) and therefore Pi can be parameterized as

Pi = (θ00(2ui) : θ01(2ui) : θ10(2ui) : θ11(2ui)). (19)

Corollary 3.2. X(4, 8) restricted to case (i-1),(i-2) or (i-3) of Theorem 3.1 is isomorphic
to
(i-1)

{(u1, · · · , u8, τ) ∈ (C/(Z+ Zτ))8 × (H/SL(2,Z)) | ui + uj + uk + ul 6≡ 0}, (20)

where 1 ≤ i, j, k, l ≤ 8 are different each other and H is the upper half of the complex
plane;
(i-2)

{(u1, · · · , u8) ∈ (P1 \ {0,∞})8 | uiujukul 6= 1}; (21)

(i-3)

{(u1, · · · , u8) ∈ (P1 \ {∞})8 | ui + uj + uk + ul 6= 0}. (22)
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Proof. It is enough to show that Pi, Pj , Pk, Pl are on the same plane if and only if ui +
uj + uk + ul = 0 holds (uiujukul = 1 holds in case (i-2)). Notice thatPi, Pj , Pk, Pl are on
the same plane if and only if ∣∣∣∣∣∣∣∣

xi yi zi wi
xj yj zj wj
xk yk zk wk
xl yl zl wl

∣∣∣∣∣∣∣∣ = 0 (23)

holds.
· In case (i-1). When (23) is considered to be a rational function of ui, the origin is
the unique pole of order 4. By Abel’s Theorem the sum of zero points are 0. Here,
ui = uj , uk, ul are zero points and hence the other zero point is ui = −uj − uk − ul.
· In case (i-2) or (i-3). When (23) is considered to be a rational function of ui, ui = 1 (the
origin in case (i-3)) is the unique pole of order 4 and therefore there are 4 zero points. It
is easily shown that ui = uj , uk, ul, (ujukul)−1, (ui = uj , uk, ul,−uj −uk−ul in case (i-3))
are those 4 points by substitution.

A similar argument leads the following theorem concerning the dimension of linear
system | − 1

2KX | of rational variety X = XP1,···,P8 .

Theorem 3.2. In case (i) of theorem 3.1, dim(| − 1
2KX |) is 2 if and only if, in case (i-1)

or (i-2)

u1 + u2 + · · ·+ u8 = 0 (24)

holds and in case (i-1)

u1u2 · · ·u8 = 1 (25)

holds.

Since each surface in |− 1
2KX | is a rational projective elliptic surface, dim |− 1

2KX | ≤ 2
holds and if the equivalent conditions of Theorem 3.2 is satisfied, X is an elliptic variety.

Proof. Case (i-1).
(⇒). If dim(| − 1

2KX |) ≥ 2, there exists a surface D ∈ | − 1
2KX | which does not include

the intersection curve of (i-1). Let P9 and P10 be generic points on D. D is described as∣∣∣∣∣∣∣∣∣∣∣∣∣

x2 y2 z2 w2 xy yz zw wx xz yw
x2

1 y2
1 z2

1 w2
1 x1y1 y1z1 z1w1 w1x1 x1z1 y1w1

...
x2

7 y2
7 z2

7 w2
7 x7y7 y7z7 z7w7 w7x7 x7z7 y7w7

x2
9 y2

9 z2
9 w2

9 x9y9 y9z9 z9w9 w9x9 x9z9 y9w9

x2
10 y2

10 z2
10 w2

10 x10y10 y10z10 z10w10 w10x10 x10z10 y10w10

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0.(26)

By Bézout’s theorem the intersection ofD and the curve of (i-1) is the 8 points P1, P2, · · · , P8,
which are given by the zero points of (26) with (x : y : z : w) = (℘(u) : ℘(u)′ : 1 : ℘(u)2).
The left hand side of the equation is an elliptic functions of u and has the unique pole
u = 0 of order 8. Since the 8 points u = u1, u2, · · · , u8 are zero points, by Abel’s theorem
we have u1 + u2 + · · ·+ u8 = 0.
(⇐) Assume u1 + u2 + · · · + u8 = 0. By considering the zero points of the same elliptic
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function, it is shown that the intersection of a generic quadratic surface D passing through
7 points P1, P2, · · · , P7 and the curve of (i-1) is the 8 points P1, P2, · · · , P8. Hence D is an
element of | − 1

2KX |. The dimension to choose such D is 2 or higher.
In case (i-2) or (i-3), it is enough to change the argument about Abel’s theorem as the
proof of Corollary 3.2.

Proof of Theorem 3.1
Since the later part is easy, we show only the former part.
We consider normalization of (14) by PGL(4). Note that P−1 in PGL(4) acts on the

pencil as
xt(αA+ βB)x = 0→ xt(αP tAP + βP tBP )x = 0.

Note also the following facts.

Fact 1. Any complex symmetric matrix can be diagonalized to the form diag(1, · · · , 1, 0, · · · , 0)
by PGL.
Fact 2. The n× n identity matrix is not changed by orthonormal matrices.
Fact 3. Since “two complex symmetric matrices are similar if and only if they are similar
via a complex orthonormal similarity,” if two matrices have the same Jordan normal form,
they are mapped each other by some complex orthonormal matrix. (pp.212 in [7]).

Assume that there exists (s : t) such that rank(sA+ tB) = 2, by Fact 1 the matrix is
normalized to diag(1, 1, 0, 0) and the defining equation can be factorized. Hence, 4 or more
points in the 8 points on xt(αA+ βB)x = 0 are on the same plane, which contradicts the
assumption of the configuration space. So we have rank(sA+ tB) ≥ 3 for all (s : t) ∈ P1.

Lemma 3.2. If rank(sA+ tB) ≥ 3 for all (s : t) ∈ P1, there exists (s : t) ∈ P1 such that
rank(sE + tF ) = 4.

Proof. Without loss of generality we can assume A = diag(1, 1, 1, 0). We normalize B
by 3 × 3 matrix. Since the sizes of Jordan blocks of the 3 × 3 submatrix of B should be
(1, 1, 1), (2, 1) or (3), by Fact 3, we can set B as

a 0 0 e
0 b 0 f
0 0 c g
e f g d

 ,


a+ 1

√
−1 0 e√

−1 a− 1 0 f
0 0 b g
e f g d

 ,


a 1

√
−1 e

1 a 0 f√
−1 0 a g
e f g d

 .

Assume rank(sA+ tB) = 3 for all (s, t) ∈ P1. In the first case, we have d = e = f = g = 0
and therefore the rank becomes 2 or less for some t, which is a contradiction. Along the
same line, in the second or the third case it can be shown that the rank becomes 2 or
less, which is a contradiction. Hence there exists (s : t) ∈ P1 such that rank(sA+tB) = 4.

From the above lemma, we may assume A = Identity and rankB = 3. The Jordan
normal form of B has the following 5 possibilities:

(i− 1)


a 0 0 0
0 b 0 0
0 0 c 0
0 0 0 0

 ,

11



(i− 2)


a 1 0 0
0 a 0 0
0 0 b 0
0 0 0 0

 ∼


0 0 0 0
0 a+ 1

√
−1 0

0
√
−1 a− 1 0

0 0 0 1

 ,

(i− 3)


a 1 0 0
0 a 1 0
0 0 a 0
0 0 0 0

 ∼


0 0 0 0
0 1 1 0
0 0 1 1
0 0 0 1

 ,

(ii)


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 ∼


0 0 1
√
−1

0 0
√
−1 −1

1
√
−1 −1

√
−1√

−1 −1
√
−1 1

 ,

(iii)


0 1 0 0
0 0 0 0
0 0 a 1
0 0 0 a

 ∼


1
√
−1 0 0√

−1 −1 0 0
0 0 2

√
−1

0 0
√
−1 0

 ,

where the right hand side matrices are similar to B except the proportional constants. We
replace B by the right hand side matrices.
· Case (i-1). Since rank(sA + tB) ≥ 3, a, b, c are not zero and different each other. By
replacing the basis of pencil xt(αA + βB)x = 0, we may assume A = diag(0, a, b, c)
and B = diag(d, e, f, 0). Moreover, by the actions of diagonal matrices, we can set A =
diag(0, 1, 1, 1) and B = diag(a, a, b, 0). Finally, by multiplying a constant to B, we can set
A = diag(0, 1, 1, 1), B = diag(1, 1, a, 0) (a 6= 0, 1). On the other hand if ∆ = g3

2 − 27g2
3 is

not zero, using e1 = ℘(w1/2), e2 = ℘(w2/2), e3 = ℘((w1 + w2)/2), (F ) can be written as

y2 − 4xw + 4(e1 + e2 + e3)x2 − 4(e1e2 + e1e3 + e2e3)xz + 4e1e2e3z
2 = 0.

The matrices

E =


1 0 0 0
0 0 0 0
0 0 0 −1

2
0 0 −1

2 0

 ,

F =


4(e1 + e2 + e3) 0 −2(e1e2 + e1e3 + e2e3) −2

0 1 0 0
−2(e1e2 + e1e3 + e2e3) 0 4e1e2e3 0

−2 0 0 0


are normalized to E′ = diag(0, 1, 1, 1), F ′ = diag(1, 1, λ, 0) via

P =


0 1 0 0
1 0 0 0
0 0

√
−1 −1

0 0
√
−1 1

 ,

where

λ =
e2 − e3

e1 − e3

=
31/3(3

√
−1 +

√
3)g2 − (−3

√
−1 +

√
3)(9g3 +

√
−3g3

2 + 81g2
3)2/3

−31/3(−3
√
−1 +

√
3)g2 + (3

√
−1 +

√
3)(9g3 +

√
−3g3

2 + 81g2
3)2/3

(27)
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is the λ function. By suitably replacing P , λ can be changed to 1/λ, 1−λ, 1/(1−λ), λ/(λ−
1), (λ − 1)/λ (by using the fact that E′ and F ′ are simultaneously decomposed to the
eigenspaces, it can also be shown that λ cannot be other than these.) Note that λ is
invariant under the action (w1, w2) 7→ (sw1, sw2) ⇔ (g2, g3) 7→ (g2/s

4, g3/s
6). We show

that there exist corresponding g2 and g3 when λ 6= 0, 1,∞ (∆ = 0 if λ = 0, 1 or ∞).
Setting

y =
λ− 1/2−

√
3
√
−1/2

λ− 1
,

we have

y =
3
√
−1(1/2−

√
3/2)g2

g2 − (3
√

3g3 +
√
−g3

2 + 27g2
3)(2/3)

.

We show that there exist corresponding g2 and g3 when y 6= 1/2+
√

3
√
−1/2, 1,∞. Setting

g2 = a, (3
√

3g3 +
√
−g3

2 + 27g32)(2/3) = 3b2, we have

y =
3
√
−1(1/2−

√
3/2)a

a− 3b2
.

Hence, there exist corresponding a, b ∈ C for arbitrary y ∈ C. Since g2 = a, g3 =
a3/(54b3) + b3/2, we can find the corresponding g2 and g3 when b 6= 0. If b = 0, we
have g2 = g3 = 0, which is not in the case considered here.

· Case (i-2). Set

P1 =


1 0 0 0
0 1 0 0
0 0 2 0
0 0 0 1

 , P2 =


1 0 0 0
0 −

√
−1√
a

−1
(a−1)

√
a

0

0 0
√
−1
√
a

2(1−a) 0

0 0 0
√
−a
a−1

 ,

A′ = P t2(P1AP1 − P1BP1)P2,

B′ =
1− a
a

P t2P1BP1P2,

Then A′ = diag(1, 1, 1, 0) and the Jordan normal form of B′ is
0 0 0 0
0 1 1 0
0 0 1 0
0 0 0 1

 . (28)

On the other hand, if ∆ = 0, setting

P1 =


0 1 0 0
1 0 0 0
0 0

√
−1 −1

0 0
√
−1 1

 , P2 =


√

2
√

3g2 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,

E′ = P2P
t
1AP1P2,

F ′ = −2
3
P2(P t1BP1

√
3

4
√
g2
− P t1AP1)P2,
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we have E′ = diag(1, 1, 1, 0) and (28) as the Jordan normal form of F ′. Hence it has been
shown that the two pencils are equivalent modulo PGL(4).
· Case (i-3). If g2 = g3 = 0, setting

P =


0 1 2

√
−1√
5

2√
5

1 0 0 0
0 0

√
−1√
5

−9√
5

0 0
√
−1√
5

1√
5

 ,

E′ = P t(A+B)P, F ′ = P tAP,

we have E′ = Identity and 
0 0 0 0
0 1 1 0
0 0 1 1
0 0 0 1


as the Jordan normal form of F ′. Hence it has been shown that the two pencils are
equivalent modulo PGL(4).
· Case (ii). Setting

P =


1 1/2 0 0

−
√
−1

√
−1/2 0 0

0 0 −1 1/2
0 0 −

√
−1 −

√
−1/2

 ,

A′ = P tAP,

B′ = P tBP,

we have

A′ =


0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0

 , B′ =


0 0 0 2
0 0 0 0
0 0 −4 0
2 0 0 0

 .

· Case (iii). Setting P,A′ and B′ as in case (ii), we have

A′ =


0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0

 , B′ =


4 0 0 0
0 0 0 0
0 0 0 −1
0 0 −1 1

 .

4 Period map and the action of the Weyl group

In this section we describe the action of W (E(1)
7 ) in case (i) of Theorem 3.1 in the normal-

ized coordinate system. For this purpose, it is enough to normalize the simple reflections
obtained in Claim 2.4, but it is not easy calculus. Thus, first, we define a linear map χX
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from the lattice Q(α) to C (which has ambiguity corresponding to the periods as discussed
later). Next, we compute the action by using the fact that χ is invariant under the action
of W (E(1)

7 ), i.e. χX(α) = χw(X)(w(α)) for α ∈ Q(α) and w ∈ W (E(1)
7 ). This method is

an analogue of that of the period map essentially introduced by Looijenga for surfaces.

Period map and the action on the intersection curve

In the following, we shall discuss only in case (i-1) of Theorem 3.1. For case (i-2) and
(i-3), we shall write the results only. Replace x/z, y/z, w/z by x, y, w. Let D1, D2 ∈ −1

2KX

the divisors determined by the proper tranforms of (E), (F ) in Theorem 3.1. We denote
the set of piece-wise smooth singular 3-chains in X −D1−D2 by S(X −D1−D2). Using
the holomorphic 3-form on X \ (D1 ∪D2)

ω =
c dx ∧ dy ∧ dw

(x2 − w)(y2 − 4xw + g2x+ g3)
(29)

(the constant c ∈ C× is determined later), we define the map χX : S(X −D1 −D2)→ C

by the paring
∫

Γ ω, (Γ ∈ S(X −D1 −D2)).
Let C denote the elliptic curve D1 ∩ D2. We define a map Q(α) → S(X − D1 −

D2)/H1(C,Z). For this purpose, it is enough to define the map for the basis αi’s.
· In the case of 0 ≤ i ≤ 6. We have αi = Ei+1 − Ei+2. Let Crei be a real curve on C from
C ∩ Ei+1 (which is expressed as u = ui+1 in the coordinate u) to C ∩ Ei+2 (u = ui+2).
Here, C has ambiguity of H1(C,Z) ' Z + Zτ . Let ε > 0 be a sufficiently small number
and Γi ∈ S(X−D1−D2) the set of points such that |x2−w| = ε, |y2−4xw+g2x+g3| = ε
and x is in the projection of Crei to the x coordinate.
· In the case of i = 7. We have α7 = (E−E1−E2−E3)−E4. Let Cre7 be a real curve on C
from C ∩ (E−E1−E2−E3) (u = −u1−u2−u3, cf. Lemma 3.2) to C ∩E4 (u = u4). Let
Γ7 ∈ S(X−D1−D2) be the set of points such that |x2−w| = ε, |y2−4xw+g2x+ g3| = ε
and x is in the projection of Cre7 to the x coordinate.
Remark 4.1. As in 2-dimensional case, we can take Γi from H3(X − D1 − D2,Z). Let
F1, F2 be divisors such that αi is written as αi = F1 − F2 as above. For our purpose, it is
enough to add singular 3-chains in F1 and F2 to the above Γi. Here, the extended part is
included by 2-dimensional algebraic subvariety and hence the effect for the integration is
zero.

By the composition Q(α)→ S(X −D1−D2)/H1(C,Z)→ C, the map χX : Q(α)→ C

is determined modulo the image of H1(C,Z). Let πx denote the projection to the x
coordinate. By residue theorem, we have

χX(αi) =
∫

Γi

ω

= c

∫
|x2 − w| = ε

|y2 − 4xw + g2x+ g3| = ε
x ∈ πx(Crei )

dx ∧ dy ∧ dw
(x2 − w)(y2 − 4xw + g2x+ g3)

= c′
∫
|y2 − 4xw + g2x+ g3| = ε

x ∈ πx(Crei )

dx ∧ dy
(y2 − 4x3 + g2x+ g3)

= c′′
∫
x∈πx(Crei )

dx

y
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= c′′
∫
Crei
∗
du (x = ℘(u), y = ℘′(u))

=
{
c′′(ui+1 − ui+2) (0 ≤ i ≤ 6)
c′′(−u1 − u2 − u3 − u4) (i = 7)

,

where Crei
∗ denotes the pullback of Crei to the space of u and the last result should be

considered modulo c′′(Z + Zτ). Since the constant c ∈ C× has been arbitrary, we can
determine it so that c′′ = 1.

By further blow-up along lines, the simple reflection ri can be considered to be an
exchange of the blow-down structure of X = XP1,···,P8 and that of ri(X) = Xri(P1,···,P8),
i.e. it just changes how to blow-down corresponding to the change of basis of Pic(X) (cf.
Remark 4.2). Let u = u0 denote the intersection point of a effective divisor D and the
curve C. Since the curve C is preserved by ri (because the modulus of C is not changed),
ri(D) and C also intersect at u = u0. Since D is arbitrary, we have

χX(α) = χri(X)(ri(α)) α ∈ Q(α).

Considering the composition, we have

χX(α) = χw(X)(w(α)) (30)

for all w ∈W (E(1)
7 ).

Remark 4.2. In the terminology of [3], this fact means that ri is a pseudo-isomorphism
from X to ri(X) and determines an exchange of the points of the blow-ups.

From (7),(30), we have

ri : (ui+1, ui+2) 7→ (ui+2, ui+1) (for 0 ≤ i ≤ 6)
r7 : (u1, · · · , u8) 7→ (u1 − λ1, · · · , u4 − λ1, u5 + λ1, · · · , u8 + λ1), (31)

where λ1 = 1
2(u1 +u2 +u3 +u4) (preserved elements are omitted). Moreover, since ri acts

on the elliptic curve C birationally and therefore it is a translation for the points on C
except Pj and ri(Pj) (1 ≤ j ≤ 8), we have

ri : u = 0 7→ u = 0 (for 0 ≤ i ≤ 6)
r7 : u = 0 7→ u = λ1 . (32)

In case (i-2)
We have

χX(αi) = c′′
∫
Crei
∗

du

u

=
{
c′′ log ui+1

ui+2
(0 ≤ i ≤ 6)

−c′′ log(u1u2u3u4) (i = 7)

ri : (ui+1, ui+2) 7→ (ui+2, ui+1) (for 0 ≤ i ≤ 6)

r7 : (u1, · · · , u8) 7→ (u1λ
−1
1 , · · · , u4λ

−1
1 , u5λ1, · · · , u8λ1),

where λ1 = (u1u2u3u4)1/2, and we have

ri : u = 1 7→ u = 1 (for 0 ≤ i ≤ 6)
r7 : u = 1 7→ u = λ1 .
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In case (i-3)
It is the same with case (i-1).

The action on P3

We investigate the action to generic points in XP1,···,P8 .

The action of ri (0 ≤ i ≤ 6)
Since the simple reflection ri just exchanges the blow-up points, it acts on P3 as the

identical map

ri : x 7→ x. (33)

The action of r7

We write Pi = (fx(ui), fy(ui), 1, fw(ui))t by the parametric representation of C: (15),(16)
or (17). Let ∗ denote the image of ∗ by r7 and set

((P1, P2, P3, P4), (P5, P6, P7, P8)) = (A,B).

For a matrix P , let 1/P denote a matrix whose elements are the reciprocal number of
corresponding elements of P . The action of r7 is given by

((A,B),x)
A−1

−−−→ ((Id, A−1B), A−1x)
SCT−−−→ ((Id, 1/(A−1B)), 1/(A−1x))

diag∈PGL(4)−−−−−−−→ diag(b1, b2, b3, b4)((Id, 1/(A−1B)), 1/(A−1x))
A−−−→ ((A,B),x),

where SCT denotes the standard Cremona transformation. Setting x′ = diag(b1, b2, b3, b4)(1/(A−1x)),
we have

x′ =
(

b1
|x, P2, P3, P4|

,
−b2

|x, P3, P4, P1|
,

b3
|x, P4, P1, P2|

,
−b4

|x, P1, P2, P3|

)
and

x′ = A
−1x =

(∣∣x, P2, P3, P4

∣∣ ,− ∣∣x, P3, P4, P1

∣∣ , ∣∣x, P4, P1, P2

∣∣ ,− ∣∣x, P1, P2, P3

∣∣) .
On the other hand, from (32), in case (i-1) and case (i-2) we have

p = (fx(λ1) : fy(λ1) : 1 : fw(λ1))t (34)

for p = (fx(0) : fy(0) : 1 : fw(0))t = (0 : 0 : 0 : 1)t (in case (i-3) we have p = (fx(λ1) :
fy(λ1) : 1 : fw(λ1))t for p = (fx(1) : fy(1) : 1 : fw(1))t = (0 : 0 : 0 : 1)t). Using these, we
can obtain bi explicitly. Consequently, we have

x =


fx(ǔ1) fx(ǔ2) fx(ǔ3) fx(ǔ4)
fy(ǔ1) fy(ǔ2) fy(ǔ3) fy(ǔ4)

1 1 1 1
fw(ǔ1) fw(ǔ2) fw(ǔ3) fw(ǔ4)




l2,3,4(x)
−l3,4,1(x)
l4,1,2(x)
−l1,2,3(x)

 , (35)
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where ǔk := uk = uk − λ1 (1 ≤ k ≤ 4) (ǔk := uk = ukλ
−1
1 (1 ≤ k ≤ 4) in case (i-2)) and

li,j,k(x) =

∣∣∣∣∣∣∣∣
fx(λ1) fx(ǔi) fx(ǔj) fx(ǔk)
fy(λ1) fy(ǔi) fy(ǔj) fy(ǔk)

1 1 1 1
fw(λ1) fw(ǔi) fw(ǔj) fw(ǔk)

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

0 fx(ui) fx(uj) fx(uk)
0 fy(ui) fy(uj) fy(uk)
0 1 1 1
1 fw(ui) fw(uj) fw(uk)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
x fx(ui) fx(uj) fx(uk)
y fy(ui) fy(uj) fy(uk)
z 1 1 1
w fw(ui) fw(uj) fw(uk)

∣∣∣∣∣∣∣∣
.(36)

5 Dynamical systems

In this section we consider a dynamical system corresponding to a translation of the
Weyl group W (E(1)

7 ). Note that although one can consider dynamical systems for all
translations, many of them are generated by birational conjugates of one of them.

Notice that

rw(αi)(β) := β − 2
(w(αi), β)

(αi, αi)
w(αi) = w−1 ◦ ri ◦ w(β)

holds for w ∈W (E(1)
7 ), a simple reflection αi and β ∈ Q(α). Since the map

T := rE−E5−E6−E7−E8 ◦ rE−E1−E2−E3−E4 (37)

acts on the root basis as

(α0, α1, α2, α3, α4, α5, α6, α7) 7→ (α0, α1, α2, α3 + δ, α4, α5, α6, α7 − 2δ),

T is a translation. Therefore Tn defines a birational dynamical system on X(4, 8)×P3. It
can also be considered to be a dynamical system on P3 with the parameters ui’s (or Pi’s).

In case (i-1) or (i-3), similar to the above section, we have the action of T on the
parameter space {ui} as

T : (u1, · · · , u8) 7→ (u1 + λ, u2 + λ, u3 + λ, u4 + λ, u5 − λ, · · · , u8 − λ),

where λ = 1
2

∑8
i=1 ui.

Since the explicit action of the transformation on P3 is complicated, we give it using a
decomposition. Although it is enough to compose rE−E5−E6−E7−E8 and rE−E1−E2−E3−E4

of course, here we use the fact T can be written as T = S2 by

S := rE4−E8 ◦ rE3−E7 ◦ rE2−E6 ◦ rE1−E5 ◦ rE−E1−E2−E3−E4 (38)

and describe the action of S. S acts on {ui} as

S : (u1, · · · , u8) 7→ (u5 + λ1, u6 + λ1, u7 + λ1, u8 + λ1, u1 − λ1, · · · , u4 − λ1) (39)

and the action on P3 is given by (35) and (36), where ǔk := uk − λ1 (1 ≤ k ≤ 4).
Along the same line, in case (i-2) we have

S : (u1, · · · , u8) 7→ (u5λ1, u6λ1, u7λ1, u8λ1, u1λ
−1
1 , · · · , u4λ

−1
1 )

and the action of S on P3 is given by (35) and (36), where ǔk := uk = ukλ
−1
1 (1 ≤ k ≤ 4).
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6 Conservation law

In this section we prove the following theorem.

Theorem 6.1. In case (i) of Theorem 3.1, the action of the Weyl group preserves each
member of the pencil of quadratic surfaces in Theorem 3.1.

Remark 6.1. The pencil of Theorem 3.1 is given by the linear system | − 1
2KX | in generic.

By Theorem 6.1, if the dimension of | − 1
2KX | is 2 or more (δ = 0 by Theorem 3.2),

each fiber is preserved by translations associated with the Weyl group W (E(1)
7 ), because

(i) each surface is an elliptic surface (ii) each map is birational (hence continuous except
at the indefinite points) and preserves the fibration (iii) the modulus of elliptic curve is
preserved (iv) at least the intersection curve of the pencil is preserved.

Since for every discrete Painlevé equation the polynomial degree of the n-th iterate is
in the order n2 as n→∞ [17], by Theorem 6.1 the following corollary follows.

Corollary 6.1. Let ϕ be a map on P3 associated with a translation of W (E(1)
7 ). The

degree of ϕn is in the order n2 as n→∞.

Since −1
2KX is preserved and therefore the pencil itself is preserved, in order to prove

Theorem 6.1 it is enough to show that the automorphism of P1 defined by this corre-
spondence is the identity. In case (i-2) and (i-3) it is easily shown by direct computation.
Moreover, the simple reflection ri(0 ≤ i ≤ 6) acts on P3 as the identity. Hence it is enough
to show for r7 in case (i-1). For r7, to prove by direct calculation seems to be beyond
our computational ability. We prove the theorem in this case by means of a birational
representation of W (E(1)

8 ) on P1 × P1.
Notice that a smooth quadratic surface is isomorphic to P1 × P1 via the Segré map

P
1 × P1 3 (x : 1, y : 1) 7→ (x : y : 1 : xy) ∈ {(x : y : z : w) ∈ P3 | xy − zw = 0}.

Here we reparametrize the parameter space so that the 8 points are on the intersection
curve of the pencil spanned by the 2 quadratic surfaces{

xy − zw = 0 (G)

(x+ y + z)(4w − g3

℘3(2t)
z) =

(
w + x+ y + g2

4℘2(2t)
z
)2

(H)
, (40)

where t ∈ (C/(Z+ Zτ)) \ {0} is an arbitrary extra-parameter.
Remark 6.2. The parameter τ = w2/w1 is invariant with respect to t.

By this parametrization, Pi can be parameterized as

Pi

(
℘(t+ ui)
℘(2t)

:
℘(t− ui)
℘(2t)

: 1 :
℘(t+ ui)℘(t− ui)

℘2(2t)

)
.

The action of r7 on (u, t) and on P3 are also given by (31) and (35) respectively, where we
set

fx(u) =
℘(t+ u)
℘(2t)

, fy(u) =
℘(t− u)
℘(2t)

, fw(u) =
℘(t+ u)℘(t− u)

℘2(2t)
,
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ǔk := uk − λ1 (1 ≤ k ≤ 4) and

li,j,k(x) =

∣∣∣∣∣∣∣∣
fx(λ1) fx(ǔi) fx(ǔj) fx(ǔk)
fy(λ1) fy(ǔi) fy(ǔj) fy(ǔk)

1 1 1 1
fw(λ1) fw(ǔi) fw(ǔj) fw(ǔk)

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

1 fx(ui) fx(uj) fx(uk)
1 fy(ui) fy(uj) fy(uk)
1 1 1 1
1 fw(ui) fw(uj) fw(uk)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
x fx(ui) fx(uj) fx(uk)
y fy(ui) fy(uj) fy(uk)
z 1 1 1
w fw(ui) fw(uj) fw(uk)

∣∣∣∣∣∣∣∣
.

Next, we list the necessary results by Murata et al. [11] concerning birational maps on
P

1 × P1 whose space of initial conditions S = SP1,···,P8 ’s are given by blow-ups of P1 × P1

at generic 8 points P1, P2, · · · , P8 on the smooth curve of degree (2, 2)

(x+ y + 1)(4xy − g3

℘3(2t)
) =

(
xy + x+ y +

g2

4℘2(2t)

)2

. (41)

Let x and y be the usual coordinates of P1 × P1. Let H0, H1 and Ei denote the total
transform of x = c ∈ P1, that of y = c′ ∈ P1 and that of the exceptional divisor generated
by the blow-up at the point Pi respectively. The Picard group and the canonical divisor
of the surface S are

Pic(S) = ZH0 ⊕ ZH1 ⊕ ZE1 ⊕ ZE2 ⊕ · · · ⊕ ZE8

KS = −2H0 − 2H1 + E1 + E2 + E3 +E4 + E5 + E6 + E7 + E8

and the intersection numbers are given by

Hi ·Hj = 1− δi,j , Hi · Ej = 0, (Ei, Ej) = −δi,j .

The root basis is given by

αi = E7−i − E8−i (i = 0, 1, · · · , 5),
α6 = H1 − E1 − E2, α7 = H0 −H1, α8 = E1 − E2,

d d d d d d d d
d

α7 α6 α5 α4 α3 α2 α1 α0

α8

Figure 2: E(1)
8 Dynkin diagram

and each action on the parameter space (u, t) becomes

ri : (u7−i, u8−i) 7→ (u8−i, u7−i), (i = 0, 1, · · · , 5)

r6 :
(
u1 u2 u3 u4

u5 u6 u7 u8
, t

)
7→
(
u1 − 3λ1,2 u2 − 3λ1,2 u3 + λ1,2 u4 + λ1,2

u5 + λ1,2 u6 + λ1,2 u7 + λ1,2 u8 + λ1,2
, t− λ1,2

)
,

r7 : t 7→ −t, r8 : (u1, u2) 7→ (u2, u1), (42)
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where λ1,2 = 1
4(2t+ u1 + u2).

Proof of Theorem 6.1
As mentioned above, it is sufficient to show for r7 = rE−E1−E2−E3−E4 in case (i-1). Let
G and H denote the matrices corresponding to (G) and (H) of the pencil (40). We
write (x : y : z : w) := r7(x : y : z : w). Since the image of a member of the pencil
(x : y : z : w)|xt(α0G+α1H)x=0 ((α0 : α1) ∈ P1) is again an element of | − 1

2KX | and
therefore is again a member of the pencil (the intersection curve does not move). Hence,
there exists (β0 : β1) ∈ P1 such that xt(β0G+β1H)x = 0. Since this correspondence defines
an automorphism of the base space P1 of the pencil, it is enough to show that 3 members of
the pencil are preserved. Hence we may assume rank(α0G+α1H) = rank(β0G+β1H) = 4.
In the following, we assume (α0 : α1) 6= (β0 : β1) and lead a contradiction.

Lemma 6.1. Assume rank(α0G + α1H) = 4. There exist P ∈ PGL(4), v ∈ C× and
t′ ∈ (C/(Z+ Zτ)) \ {0} such that

P t(α0G+ α1H)P = G, P tHP = vH(℘(2t′))

and moreover there exist Q1, Q2 ∈ PGL(4), v1, v2 ∈ C× and c, d ∈ C \ {0, 1} such that

Qt1(α0G+ α1H)Q1 = diag(1, 1, 1, 1), Qt1HQ1 = v1diag(0, 1, c, d),
Qt2GQ2 = diag(1, 1, 1, 1), Qt2H(℘(2t′))Q2 = v2diag(0, 1, c, d).

Proof. Since rankH = 3, similar to the proof of Theorem 3.1, G and H can be transformed
to

G′ = Id., H ′ = vdiag(0, a, b, 1) a, b, 1 are different each other

by PGL(4). Here, a and b are functions of g2, g3 and ℘(2t). Conversely, if a, b, 1 are
different each other, there exist corresponding g2, g3 and ℘(2t). On the other hand, they
are also transformed to

(α0G+ α1H)′′ = Id. H ′′ = v1diag(0, c, d, 1) c, d, 1 are different each other

by PGL(4). Hence, there exist corresponding g′2, g
′
3, ℘(2t′) and P ∈ PGL(4) such that

P : α0G+ α1H,H 7→ G,H(g′2, g
′
3, ℘(2t′)).

Here, r7 defines a birational map between the intersection curves and therefore the pa-
rameter τ = w2/w1 does not change. As Remark 6.2, if we fix w1 as w1 = 1, only t′ can
change, which shows that H ′ is a function depending only on ℘(2t′).

For (α0 : α1) and (β0 : β1) we denote t′ determined by Lemma 6.1 by ta and tb
respectively. First, we show ta 6= tb. Assume ta = tb. Since only PGL(4) is needed
for diag(0, 1, c, d) when one normalizes the pair diag(1, 1, 1, 1),diag(0, 1, c, d) to the pair
diag(0, 1, 1, 1),diag(1, 1, λ, 0), there exist members J and J ′ of the pencil, where J 6=
J ′, rankJ = rankJ ′ = 3, such that both pairs J,H and J ′,H can be transformed to
the form diag(0, 1, 1, 1),diag(1, 1, λ, 0) by PGL(4). Hence there exist members K =
diag(0, 1, 1, 1) and K ′ of the pencil {s0diag(0, 1, 1, 1) + s1diag(1, 1, λ, 0)}, where K 6=
K ′, rankK ′ = 3, such that the pair K,H can be transformed to the pair K ′,H by PGL(4).
The members of this pencil in rank 3 areK = diag(0, 1, 1, 1),diag(1, 1, λ, 0),K1 := diag(1, 0, λ−
1,−1) and K2 := diag(−1, λ − 1, 0, λ) only. Therefore, K ′ should be K1 or K2. Normal-
izing each by PGL(4), we have that λ is λ/(λ − 1), (λ − 1)/λ, 1 − λ or 1/(1 − λ). If
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λ 6= 2, 1
2 ,

1±3I
2 , it does not coincides with λ. Hence, if τ does not correspond to these λ,

we have ta 6= tb (as shown by (27), λ does not depend on ℘(2t))
Let Pa, Pb denote the elements of PGL(4) which give ta, tb in Lemma 6.1. We consider

the map defined by Pb ◦ r7 ◦ P−1
a . Since the period map χX is conserved by PGL(4), we

have ui = ui − λ1 + c (1 ≤ i ≤ 4), ui = ui + λ1 + c (5 ≤ i ≤ 8), where c is a constant. On
the other hand, the map

xtGx = 0 P−1
a−−−→xt(α0G+ α1H)x = 0 r7−−−→xt(β0G+ β1H)x = 0 Pb−−−→xtGx = 0

and Segré map define a birational map on P1 × P1.
By blow-up P1×P1 at {Pi} and {Pi} the map is lifted to an isomorphism and included

by the Weyl group of type E(1)
8 . Since the Weyl group conserves χS(δ) = −

∑8
i=1 ui, we

have c = 0. Hence r7 can be written as

r7 = rH0+H1−E1−E2−E3−E4 = r6 ◦ r7 ◦ r5 ◦ r8 ◦ r4 ◦ r5 ◦ r6 ◦ r5 ◦ r4 ◦ r8 ◦ r5 ◦ r7 ◦ r6

by the root system of E(1)
8 , and we have ta = tb from (42), which contradicts ta 6= tb.

We have shown (α0 : α1) = (β0 : β1) if τ does not correspond to λ 6= 2, 1
2 or 1±3I

2 .
When λ = 2, 1

2 ,
1±3I

2 it can be shown by continuity of ℘ with respect to τ .

7 Conclusions and discussions

In this paper, we defined the inner product for the Picard group of varieties obtained by
blow-ups at 8 points in P3 by means of the intersection numbers and the anti-canonical
divisor and showed that the symmetry group defined by means of the inner product is the
Weyl group of type E(1)

7 . As in 2-dimensional case [15], if the configuration of points is
special, the symmetry may become smaller.

This method can be applied to other families of 3-dimensional rational varieties.
Example 7.1. Let X be a variety obtained by blow-ups at generic 6 points in P1×P1×P1

and let Hi and Ei denote the total transform of divisor class of a plane such that one of
its coordinate of P1×P1×P1 is constant and that of the exceptional divisor generated by
a blow-up respectively. The symmetry group Gr({X}) becomes the Weyl group of type
E

(1)
7 defined by the root system

α0 = H0 −H2, α1 = H1 −H2, α3 = H2 − E1 − E2,

αi = Ei−1 − Ei (3 ≤ i ≤ 6), α7 = E1 − E2,

where the inner product is given by (Hi, Hj) = 1 − δi,j , (Hi, Ej) = 0, (Ei, Ej) = −δi,j .
This X and the variety obtained of blow-ups at generic 8 points in P3 are not isomorphic.
Thus, the relation between these 2 Weyl groups is not trivial.

It may be worth commenting that the space of initial conditions for Kajiwara-Noumi-
Yamada’s birational representation of the Weyl group of type A(1)

1 ×A
(1)
2 [9] can be obtained

when the points of blow-ups are in special position in the above example. These examples
are 3-dimensional but it is expected that our method can be applied to 4 (or higher)-
dimensional cases.

The other results are summarized as follows.
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·We parametrized the configuration space by normalizing the pencil of quadratic surfaces
passing through 8 points (∈ | − 1

2KX |) by PGL(4). The intersection curve is an elliptic
curve in generic.
· In order to obtain concrete expression of the action of the Weyl group, we introduced a
3-dimensional analogue of period map.
·We showed the action of the Weyl group preserves each element of |− 1

2KX | and therefore
it reduces to the action on P1 × P1. The reduced action of the Weyl group of type E(1)

7

is included by the action of the Weyl group of type E(1)
8 , which is the symmetry of the

family of generic Halphen surfaces.
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