6.4 不等式制約問題

制約付き最適化問題は以下のような一般型をもつ.

$$(P)$$
 最小化 $f(x)$ 制約 $x \in C$

今まで、制約 C が区間と等式で定義される場合を扱ってきたが、一般的に等式と不等式を制約に持つ場合を考える.

例 16 (射影問題). 平面 $4x_1+x_2+2x_3=2$ と単位球の内部 $x_1^2+x_2^2+x_3^2=1$ との共通部分の点で、点 (2,3,4) までの距離が一番近い点を求めたいとする. するとこの問題は

最小化
$$f(x_1, x_2, x_3) := (x_1 - 2)^2 + (x_2 - 3)^2 + (x_3 - 4)^2$$

制約 $x_1^2 + x_2^2 + x_3^2 \le 1$
 $4x_1 + x_2 + 2x_3 = 2$

と書ける. この実行可能領域を C で表すと、これは $g(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^2 - 1$, $h(x_1, x_2, x_3) = 4x_1 + x_2 + 2x_3 - 2$ とおくことによって、

$$C = \{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid g(x_1, x_2, x_3) \le 0, h(x_1, x_2, x_3) = 0\}$$

と書ける. この問題の最適解は点 (2,3,4) の集合 C への射影と呼ばれる.

6.5 不等式が一つの場合

$$(P)$$
 最小化 $f(x,y) := x^2 + 6xy + y^2$
制約 $g(x,y) := x^2 + y^2 - 1 \le 0$

 (\bar{x},\bar{y}) を上の最適化問題の局所最小解とすると、次の二つの場合が考えられる:

(1). (\bar{x}, \bar{y}) が円の内部にある $(g(\bar{x}, \bar{y}) < 0)$ ときは, $\nabla f(\bar{x}, \bar{y}) = 0$ が成り立つ (通常の停留点).

(解説) g(x,y)<0 をみたす (x,y) は, $(\bar x,\bar y)$ の近くですべての方向に存在する. また局所最小解の定義より, $f(x,y)\geq f(\bar x,\bar y)$ が成り立つ. よって, $\nabla f(\bar x,\bar y)=0$ が成り立つ.

(2). (\bar{x}, \bar{y}) が円周上にある $(g(\bar{x}, \bar{y}) = 0)$ ときは, $\nabla f(\bar{x}, \bar{y}) = \lambda_0 \nabla g(\bar{x}, \bar{y}), \lambda_0 \in \mathbb{R}$ が 成り立つ (円周に関する停留点).

(解説) (x,y) を円周に制限しても (\bar{x},\bar{y}) は局所最小解である.

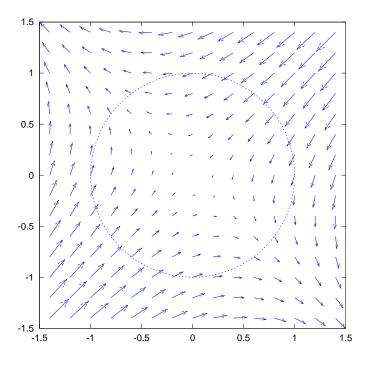


図 4: $x^2 + 6xy + y^2$ の (-1)× 勾配ベクトル

二つの場合をまとめて書くと,

$$\nabla f(\bar{x}, \bar{y}) = \lambda_0 \nabla g(\bar{x}, \bar{y})$$
$$\lambda_0 g(\bar{x}, \bar{y}) = 0$$

と書ける. さらに (2) の場合, 不等式の特性を活かすとラグランジュ乗数 λ_0 の符号 を制限することができる.

いま、ベクトル $\nabla g(\bar{x},\bar{y})$ は g の値が増える方向を向いている.従って、実行可能領域が $C=\{(x,y)\colon g(x,y)\leq 0\}$ (図 4 の円の境界と内部) であることを考えると、 $\nabla g(\bar{x},\bar{y})$ は領域 C の外側を向き、境界に直交した方向になっている.一方 $\{-\nabla f(\bar{x},\bar{y})\}$ は目的関数 f の値が減る方向なので、それも領域 C の外側を向いていることになる.従って、

$$-\nabla f(\bar{x}, \bar{y}) = \lambda \nabla g(\bar{x}, \bar{y})$$
$$\lambda g(\bar{x}, \bar{y}) = 0, \ \lambda \ge 0$$

となる.

定理 12. 最小化問題

最小化
$$f(x)$$
 制約 $g(x) \le 0$

に対して、 \bar{x} が局所最小解ならば、ある数 λ が存在して、

$$-\nabla f(\bar{x}) = \lambda \nabla g(\bar{x})$$
$$\lambda g(\bar{x}) = 0, \lambda \ge 0$$
$$g(\bar{x}) \le 0$$

が成り立つ.

6.6 制約式が複数あるとき

$$(P)$$
 最小化 $f(x,y) := x^2 + 6xy + y^2$ 制約 $g_1(x,y) := x^2 + y^2 - 1 \le 0$ $g_2(x,y) := -x - 1/2 \le 0$

で、 (\bar{x},\bar{y}) を局所最小解とする。 $C=\{(x,y)\colon g_1(x,y)\leq 0,g_2(x,y)\leq 0\}$ とおくと、以下三つの場合がある。

- (1). (\bar{x}, \bar{y}) が C の内部にあるときは, $\nabla f(\bar{x}, \bar{y}) = 0$.
- (2). (\bar{x}, \bar{y}) が $g_1(\bar{x}, \bar{y}) = 0$, $g_2(\bar{x}, \bar{y}) < 0$ をみたす場合, $-\nabla f(\bar{x}, \bar{y}) = \lambda_1 \nabla g_1(\bar{x}, \bar{y})$ か $\lambda_1 \geq 0$.
- (3). (\bar{x}, \bar{y}) が $g_1(\bar{x}, \bar{y}) = 0$, $g_2(\bar{x}, \bar{y}) = 0$ をみたす場合, $-\nabla f(\bar{x}, \bar{y}) = \lambda_1 \nabla g_1(\bar{x}, \bar{y}) + \lambda_2 \nabla g_2(\bar{x}, \bar{y})$ かつ $\lambda_1, \lambda_2 \geq 0$.

(解説) 不等式一つの場合と同様に考えると, 目的関数 f の減少する方向 $-\nabla f(\bar{x},\bar{y})$ は領域 C の外側を向いている. これは $-\nabla f(\bar{x},\bar{y})$ が二つのベクトル $\nabla g_1(\bar{x},\bar{y})$ と $\nabla g_2(\bar{x},\bar{y})$ に挟まれた方向にあるということである.

三つの場合をまとめて書くと.

$$-\nabla f(\bar{x}, \bar{y}) = \lambda_1 \nabla g(\bar{x}, \bar{y}) + \lambda_2 \nabla g(\bar{x}, \bar{y})$$
$$\lambda_i g_i(\bar{x}, \bar{y}) = 0, \ \lambda_i \ge 0 \ (i = 1, 2)$$

となる.

一般には次のような定理を得る.

定理 13. 最小化問題

最小化
$$f(x)$$

制約 $g_1(x) \le 0, \dots, g_m(x) \le 0$
 $h_1(x) = 0, \dots, h_l(x) = 0$

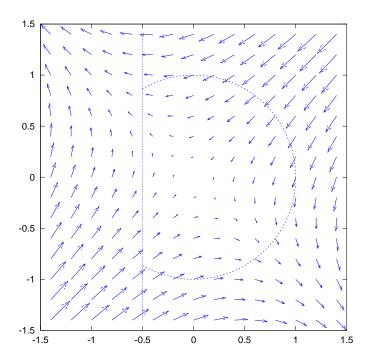


図 5: $x^2 + 6xy + y^2$ の (-1)× 勾配ベクトル 制約 $x^2 + y^2 - 1 \le 0, -x - 1/2 \le 0$

に対して, \bar{x} が局所最小解であり $\{\nabla g_i(\bar{x}), \nabla h_j(\bar{x})\}$ が一次独立であるとする. すると, ある数 λ_i, μ_i が存在して,

$$-\nabla f(\bar{x}) = \lambda_1 \nabla g_1(\bar{x}) + \dots + \lambda_m \nabla g_m(\bar{x}) + \mu_1 \nabla h_1(\bar{x}) + \dots + \mu_l h_l(\bar{x})$$
$$\lambda_i g_i(\bar{x}) = 0, \ \lambda_i \ge 0, \ \mu_j : 任意$$
$$g_i(\bar{x}) \le 0, \ h_j(\bar{x}) = 0$$

が成り立つ.この条件式を一次の最適性必要条件と呼ぶ.

補足. λ_i に関する条件を、ベクトル $\lambda=(\lambda_1,\ldots,\lambda_m),\ g(x)=(g_1(x),\ldots,g_m(x))$ と内積を用いて、

$$\langle \lambda, g(\bar{x}) \rangle = 0, \ \lambda \ge 0, g(\bar{x}) \le 0$$

とも書く. これを相補性条件と呼ぶ.

6.7 例題

次の最小化問題を解く.

最小化
$$f(x,y) = x^2 + 6xy + y^2$$

制約 $C = \{(x,y) : g(x,y) = x^2 + y^2 - 1 \le 0\}$

まず、一次の最適性必要条件を書くと、

(*)
$$\begin{cases} -\begin{bmatrix} 2x+6y\\ 6x+2y \end{bmatrix} = \lambda \begin{bmatrix} 2x\\ 2y \end{bmatrix} \\ \lambda(x^2+y^2-1) = 0, \ \lambda \ge 0 \\ x^2+y^2-1 \le 0 \end{cases}$$

となる. 以下場合分けで解く.

 $x^2+y^2-1<0$ の場合、(*) を満たすものは $\lambda=0,\,(x,y)=(0,0)$ となる. $x^2+y^2-1=0$ の場合を考える. まず、

$$-\begin{bmatrix} 2x+6y\\6x+2y \end{bmatrix} = \lambda \begin{bmatrix} 2x\\2y \end{bmatrix}, \ x^2+y^2-1=0$$

を見たす点 (等式の場合と同じ) を探すと, $(\lambda, x, y) = (2, \pm \frac{1}{\sqrt{2}}, \mp \frac{1}{\sqrt{2}}), (-4, \pm \frac{1}{\sqrt{2}}, \pm \frac{1}{\sqrt{2}})$ となる. よって, $\lambda \geq 0$ となるのは, 前者である.

よって一次の最適性必要条件を見たす点は, $(x,y)=(0,0), (\pm\frac{1}{\sqrt{2}},\mp\frac{1}{\sqrt{2}})$ となるので, それぞれにおける目的関数 f の値を調べると, 最小値は $f(\pm\frac{1}{\sqrt{2}},\mp\frac{1}{\sqrt{2}})=-2$ となる.

例 17. 最適化問題

最小化
$$f(x_1, x_2, x_3) := (x_1 - 2)^2 + (x_2 - 3)^2 + (x_3 - 4)^2$$

制約 $x_1^2 + x_2^2 + x_3^2 \le 1$
 $4x_1 + x_2 + 2x_3 = 2$

の一次の最適性必要条件を求めよ.

解答. 定理より、

$$\begin{cases} -\begin{bmatrix} 2x_1 - 4 \\ 2x_2 - 6 \\ 2x_3 - 8 \end{bmatrix} = \lambda \begin{bmatrix} 2x_1 \\ 2x_2 \\ 2x_3 \end{bmatrix} + \mu \begin{bmatrix} 4 \\ 1 \\ 2 \end{bmatrix} \\ \lambda(x_1^2 + x_2^2 + x_3 - 1) = 0, \lambda \ge 0, \mu : \text{ } £ £ \\ x_1^2 + x_2^2 + x_3^2 - 1 \le 0, 4x_1 + x_2 + 2x_3 - 2 = 0 \end{cases}$$

練習問題 4.

1. 以下の最小化問題の最小値を求めよ

(1)

最小化
$$f(x,y) = xy$$

制約 $g(x,y) = x^2 + y^2 - 1 \le 0$

(2)

最小化
$$f(x,y) = x^2 + xy + y^2$$

制約 $g(x,y) = x^2 + y^2 - 1 \le 0$

2. 一次の最適性必要条件を求めよ.

最小化
$$x_1 - x_2 + 2x_3$$

制約 $x_1^2 + x_2^2 + 2x_3^2 - 1 \le 0$
 $2x_1 + 2x_2 + x_3 - 1 = 0$

3. 原点を中心とする半径 $\sqrt{3}$ の球と平面 x+2y+2z=3 の交点の中で, x 座標 が最小となるものを求めよ.

6.8 凸計画

目的関数も制約式もすべて凸関数である問題を**凸計画**と呼ぶ. 凸計画は有用な性質を持っている.

定理 14.

(P) 最小化
$$f(x)$$
 制約 $g_i(x) \le 0, i = 1, ..., m$

で, f, g_i が凸関数であるとする. \bar{x} が一次の最適性必要条件を満たせば \bar{x} は (P) の大域最小解である.

Proof. f は凸関数なので,

$$f(x) - f(\bar{x}) \ge \nabla f(\bar{x}) \cdot (x - \bar{x})$$

が成り立つ. また, \bar{x} は一次の最適性必要条件を満たすので, ある $\lambda_i > 0$ が存在して,

$$\nabla f(\bar{x}) = -\sum_{i=1}^{m} \lambda_i \nabla g_i(\bar{x})$$

が成り立ので.

$$f(x) - f(\bar{x}) \ge -\sum_{i=1}^{m} \lambda_i \nabla g_i(\bar{x}) \cdot (x - \bar{x})$$

を得る. ここで右辺が 0 以上になることを示す. まず, q_i も凸関数なので

$$q_i(x) - q_i(\bar{x}) > \nabla q_i(\bar{x}) \cdot (x - \bar{x})$$

が成り立つ. いま x を実行可能解とすると $g_i(x) \le 0$ となる. $g_i(\bar{x}) = 0$ のときは,

$$0 \ge g_i(x) = g_i(x) - g_i(\bar{x}) \ge \nabla g_i(\bar{x}) \cdot (x - \bar{x})$$

なので、 $-\lambda_i \nabla g_i(\bar{x}) \cdot (x - \bar{x}) \geq 0$ となる。また、 $g_i(\bar{x}) \leq 0$ のときは、 $\lambda_i = 0$ なので、 $-\lambda_i \nabla g_i(\bar{x}) \cdot (x - \bar{x}) = 0$ となる。したがって、任意の実行可能界 x に対して、 $f(x) - f(\bar{x}) \geq 0$ である。