### 最適化数学第6回

#### [今回の項目]

- 復習:ラグランジュ乗数法
- ② 等式制約が複数ある場合
- ③ 不等式制約問題

復習:制約が一つの場合

最小化 
$$f(x,y) := x - y$$
  
制 約  $g(x,y) := 2x^2 + 3y^2 - 1 = 0$ 

#### [定理]

#### 最小化または最大化 f(x)

制 約 
$$g(x) = 0$$

に対して、 $\bar{x}$  を局所最適解とする.  $\nabla g(\bar{x}) \neq \mathbf{0}$  ならば、ある数  $\lambda$  が存在して、以下が成り立つ:

今回の話題:制約が二つの場合は?

最小化 
$$f(x,y,z) := z$$

**制 約** 
$$g_1(x,y,z) := x^2 + y^2 + z^2 - 4 = 0$$

$$g_2(x, y, z) := 3x - \sqrt{3}y + z - 3\sqrt{3} = 0$$

関口 良行 最適化数学 2/19

## 等式制約が二つある場合

#### [定理]

最小化問題

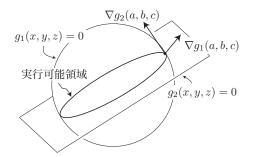
最小化 
$$f(x)$$
 制 約  $g_1(x) = 0$ ,  $g_2(x) = 0$ 

を考え、 $\bar{x}$  を局所最小解とする.  $\nabla g_1(\bar{x})$ ,  $\nabla g_2(\bar{x})$  が一次独立ならば, ある数  $\lambda_1, \lambda_2$  が存在して、以下が成り立つ:

### 定理の解説

制約式が複数の場合は3変数の問題を考えた方が良い.  $\alpha$ ,  $\beta$ ,  $\gamma$ ,  $\delta$  を定数とする. 以下の問題に対して,  $\bar{x}=(a,b,c)$  を局所最小解とする.

最小化 
$$f(x,y,z) = \alpha x + \beta y + \gamma z + \delta$$
 制 約 
$$\begin{cases} g_1(x,y,z) = x^2 + y^2 + z^2 - 1 = 0 \\ g_2(x,y,z) = x + y + z - 1 = 0 \end{cases}$$



関口 良行

最適化数学

### 等高面

3 変数関数が同じ値をとる点 (x,y,z) の集合

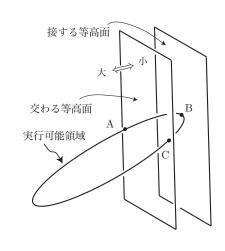
$$f(x, y, z) =$$
(定数)

を 等高面 と呼ぶ.

点が  $A \rightarrow B \rightarrow C$  と動くとき, 増減表は

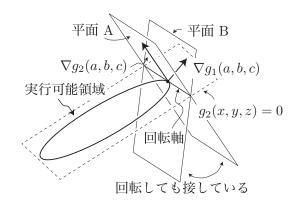
| (x,y)  | Α | В | С |
|--------|---|---|---|
| f(x,y) |   |   |   |

<u>となる.よって,</u>点 B で をとる.



<u>局所最適解で目的関</u>数の等高面は レ

### 実行可能領域と接する平面



一方,実行可能領域に接する平面の法線ベクトルは,回転させた 平面も含めてすべて,

と書ける.

## 等式制約が二つある場合

#### [定理]

最小化 
$$f(x)$$
 制 約  $g_1(x) = 0$ ,  $g_2(x) = 0$ 

に対して、 $\bar{x}$  を局所最小解とする.  $\nabla g_1(\bar{x})$ ,  $\nabla g_2(\bar{x})$  が一次独立ならば、ある数  $\lambda_1, \lambda_2$  が存在して、以下が成り立つ:

(a, b, c) は局所最小解

⇒局所最小解で と実行可能領域は接する

 $\Rightarrow$ 

7/19

## 例題

最小化 
$$z$$
 制 約  $x^2 + y^2 + z^2 = 6$   $x - y + z = 4$ 

## 練習問題

最小化 
$$x^2 + y^2$$
 制 約  $2x + y + z = 1$   $x - y - z = 0$ 

### 不等式制約問題

### Example (射影問題)

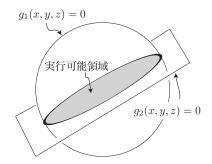
平面 4x+y+2z=2 と単位球の内部  $x^2+y^2+z^2\leq 1$  との共通部分の点で、点 (2,3,4) までの距離が一番近い点を求めよ.この問題は

最小化 
$$f(x,y,z) := (x-2)^2 + (y-3)^2 + (z-4)^2$$
  
制 約  $g_1(x,y,z) := x^2 + y^2 + z^2 - 1 \le 0$   
 $g_2(x,y,z) := 4x + y + z - 2 = 0$ 

と定式化できる. すると制約式に不等式と等式が現れる.

## 射影問題

最小化 
$$f(x,y,z) := (x-2)^2 + (y-3)^2 + (z-4)^2$$
  
制 約  $g_1(x,y,z) := x^2 + y^2 + z^2 - 1 \le 0$   
 $g_2(x,y,z) := 4x + y + z - 2 = 0$ 



関口 良行

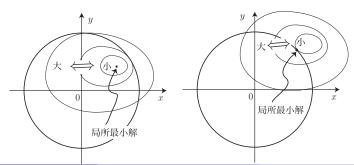
### 不等式が一つの場合

まず制約式が円周とその内部を表す不等式一つのみの場合

$$(P)$$
 最小化  $f(x,y)$  制 約  $g(x,y) := x^2 + y^2 - 1 \le 0$ 

(a,b) を局所最小解とすると、次の二つの場合が考えられる:

- **①** (a,b) が円の内部にある (g(a,b)) 場合
- ② (a,b) が円周上にある (g(a,b)) 場合



最小解 (a,b) が円の内部にある (g(a,b) < 0) 場合 このとき.

が成り立つ.

解説 (a, b) は制約なしの最小化問題

$$(P')$$
 最小化  $f(x,y)$  制 約 なし

の局所最小解でもある. これを次の具体例で説明する.

| 左側の問題の最小解は  |       | である.  | この最小  | 解は,  | 実行可 |
|-------------|-------|-------|-------|------|-----|
| 能解の内部に含まれてい | るので,  | 制約を外  | した右側  | の問題  | の最小 |
| 解も になる.     | 一般の場合 | 合も同様で | である.。 | よって, | 制約な |
| し最適化問題の最適性多 | 4件より  |       |       | が成り  | サン  |

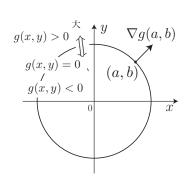
13 / 19

# 最小解 (a,b) が円周上にある (g(a,b)=0) 場合

が成り立つ.  $(\lambda$  の符号に注意).

このとき、ある実数 $\lambda$ が存在して、

解説 一般的に  $\nabla g(a,b)$  は g の等高線にし、g の値が 方向を向いている。
一方  $\{-\nabla f(a,b)\}$  は、目的関数 f の等高線にし、値が 方向なので前出の図の右図より、実行可能領域のを向いている。よって、二つのベクトルが同じ方向を向いていることから



となる.

### KKT 条件

上記二つの場合をまとめて書くと,

#### [定理]

最小化問題

最小化 
$$f(x)$$
 制 約  $g(x) \le 0$ 

に対して、 $\bar{x}$  が局所最小解であり、 $\nabla g(\bar{x}) \neq \mathbf{0}$  ならば、ある数  $\lambda$  が存在して、以下が成り立つ:

(\*)

#### 証明.

- $g(\bar{x}) < 0$  のときは、上記議論の (1) より  $\nabla f(\bar{x}) = \mathbf{0}$  が成り立つ、 $\lambda = 0$  とおくと、 $-\nabla f(\bar{x}) = \mathbf{0} = \lambda \nabla g(\bar{x})$  かつ  $\lambda g(\bar{x}) = 0$  となるので、(\*) が成り立つ.
- $g(\bar{x}) = 0$  のときは、上記議論の (2) より、ある実数  $\lambda$  が存在して、 $-\nabla f(\bar{x}) = \lambda \nabla g(\bar{x})$ 、 $\lambda \geq 0$  が成り立つ。また、 $g(\bar{x}) = 0$  より  $\lambda g(\bar{x}) = 0$  なので、(\*) が成り立つ。



関口 良行 最適化数学 16/19

## 例題

最小化 
$$f(x,y) = x^2 + 6xy + y^2$$
  
制 約  $g(x,y) = x^2 + y^2 - 1 \le 0$ 

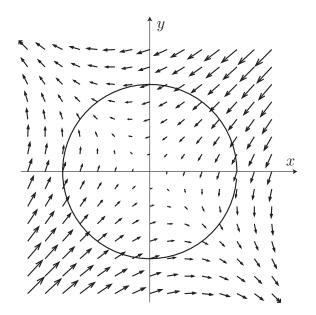


Figure: 点  $(\pm 1/\sqrt{2}, \mp 1/\sqrt{2})$  で  $-\nabla f(x,y)$  が直交外側を向いている.

関口 良行 最適化数学 18/19

## 練習問題

最小化 
$$f(x,y) = x^2 + 3xy + y^2$$
 制 約  $g(x,y) = x^2 + y^2 - 1 \le 0$