論 文

日本冷凍空調学会論文集 Trans. of the JSRAE Vol.26, No. 2 (2009) pp.185~191 原稿受付:平成20年12月22日

数値計算による凍結マグロ解凍中の品質変化の予測 I ーメト化進行度について一

Prediction of Quality Change during Thawing of Frozen Tuna Meat by Numerical Calculation I

-Studies on Metmyoglobin Formation-

村 上 菜 摘	渡辺学	鈴木徹
Natsumi MURAKAMI	Manabu WATANABE	Toru SUZUKI

東京海洋大学大学院海洋科学技術研究科食機能保全科学専攻(108-8477 東京都港区港南 4-5-7) Course of Food Science and Technology, Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology (4-5-7 Konan, Minato-ku, Tokyo, 108-8477)

Summary

A numerical calculation method has been developed to determine the optimum thawing method for minimizing the increase of metmyoglobin content (metMb%) as an indicator of color changes in frozen tuna meat during thawing. The calculation method is configured the following two steps: a) calculation of temperature history in each part of frozen tuna meat during thawing by control volume method under the assumption of one-dimensional heat transfer, and b) calculation of metMb% based on the combination of calculated temperature history, Arrenius equation and the first-order reaction equation for the increase rate of metMb%. Thawing experiments for measuring temperature history of frozen tuna meat were carried out under the conditions of rapid thawing and slow thawing to compare the experimental data with calculated temperature history as well as the increase of metMb%. The results were coincident with the experimental data. The proposed simulation method would be useful for predicting the optimum thawing conditions in terms of metMb%.

Key words: Thawing, Tuna, Met-Myoglobin, Numerical calculation

1. 緒 言

凍結魚の解凍後の品質に影響を与える因子は, 解凍前の品質,解凍速度,解凍終温度,加熱方 法や加熱媒体の種類と状態等の影響が挙げられ る¹⁾.これまで凍結魚の解凍に関する研究では, 解凍媒体や解凍媒体温度を変えることで,解凍 速度を様々に変化させたときの解凍後の品質を 調べたものが多くある²⁻⁴⁾. その結果, 緩慢解凍 が良いという意見と急速解凍が良いという相違 なる二つの意見に分かれている. 凍結マグロに 関して中出⁵⁾は, 緩慢解凍では全体が均一に溶 け,表面部でのメト化の急速な進行が抑えられ, ドリップの流出も少ないことから, 緩慢解凍の 良さを挙げている. 一方, 田中⁶⁾や尾藤⁷⁾は,

[†]Fax: 81-3-5463-0585 E-mail: mwat@kaiyodai.ac.jp

Paper presented at JSRAE Annual Conference, October 22th-25th, 2007, Tokyo, Japan

急速解凍の良さを提唱している. その理由は, 氷の再結晶化を避けられること⁶, 色の変化を 抑えるには色変の著しい温度帯である-5~-2℃ 付近を速く通過させることが良いこと 7)を挙げ ている.このように解凍速度だけに注目しても. 結局のところ最適な解凍方法が統一されていな いのが現状である. 凍結魚の種類や大きさ, 解 凍前の品質等が異なる場合, それらの実験結果 を比較することは困難となる. そのため任意の 条件においても最適な解凍方法を決定する手法 を開発することが必要である.水産物として重 要なマグロ肉の凍結貯蔵中や解凍中にはミオグ ロビンのメト化による肉の褐色化がよく見られ る. この現象は鮮度が良いときにも見られるこ とがあり、見た目の悪さから商品としての価値 が無くなってしまう. 新鮮な肉の内部ではデオ キシミオグロビンが多く含まれ、空気中の酸素 と結合し、オキシミオグロビンとなる. さらに オキシミオグロビンは自動酸化されメトミオグ ロビンが生成する. Fig.1 にミオグロビンの状態 と色調の関係^{8,9)}を示す.

Fig.1 Color change of various forms of myoglobin^{8,9)}.

メト化に関する研究は国内では主にマグロや カツオ等の赤身魚類について¹⁰⁻¹³⁾,海外では主 に牛肉や馬肉等の畜肉について¹⁴⁻¹⁶⁾様々に行わ れている.マグロ肉を扱う際には特に鮮やかな 赤色を保つこと,つまりメト化を防ぐことに重 点が置かれている.貯蔵中にはマイナス温度で もメト化は進行するが,およそ-40℃以下では進 行がほぼ停止する¹⁷⁾ため,実際にはマグロ肉を 凍結貯蔵する場合,船上で前処理を行い,空冷 式凍結装置で約2日かけて中心温度-50℃以下ま で冷却し,アイスグレーズをした後,-60℃以下 で貯蔵している¹⁸⁾.しかしながら解凍における メト化進行に関する研究は少ない.一方解凍方 法について尾藤¹⁹⁾は、0℃や2℃の水中や空気 中における低温解凍よりも20℃解凍の方がメト 化率の増加が少ないことを報告している.しか し肉塊が大きくなるにつれて,表面部と内部の 温度差が大きくなるため,必ずしも20℃程度の 解凍が良いとは言えないと考えられる.

本研究では、肉塊全体のメト化を最小限にす る解凍方法を決定する手法の開発に取り組んだ. まず、最適解凍方法を決定するための解凍挙動 を予測するため、一次元伝熱モデルに基づく、 凍結マグロ肉解凍時の温度分布の経時変化を予 測し、その温度履歴をもとに肉ブロック内部の メト化率の分布とその変化をシミュレートする プログラムを開発した.さらに、このプログラ ムを用いて急速解凍、緩慢解凍時のマグロ肉の メト化をシミュレートするとともに、それらと 同一条件にて実際の解凍実験を行い、メト化シ ミュレーションの妥当性を検討した.

NOMENCLATURE

Т	: Temperature, °C
T_f	: Freezing temperature, $^{\circ}\!\!\mathbb{C}$
r	: Frozen ratio
Ca	: Specific heat of tuna meat, kcal/(kg $\cdot ^{\circ}\mathbb{C}$)
Cb	: Specific heat of frozen tuna meat,
	kcal/(kg·℃)
L_{f}	: Latent heat of fusion of ice, kcal/kg
ρ_a	: Density of tuna meat, kg/m ³
ρ_b	: Density of frozen tuna meat, kg/m ³
λ_a	: Thermal conductivity of tuna meat,
	kcal/(m·h·℃)
λ_b	: Thermal conductivity of frozen tuna
	meat, kcal/($m \cdot h \cdot C$)
t	: Time, second
$metMb_0$: Initial metmyoglobin formation, %
metMb _t	: Metmyoglobin formation after time t in
	seconds, %
A	: Frequency factor
E_a	: Activation energy, cal/mol
R	: Gas constant, 1.987 cal/(K·mol)
у	: $A \cdot exp(-E_a/RT)$ of time t in seconds
h	: Heat transfer coefficient, kcal/($m^2 \cdot h \cdot C$)

x	: Distance, m
S	: Surface area and cross sectional area, $\ensuremath{m^2}$
T _{ini}	: Initial temperature, $^{\circ}\mathbb{C}$
T_{water}	: Thaw media temperature of water, $^{\circ}\!\!\mathbb{C}$
T _{air}	: Thaw media temperature of air, $^{\circ}\!\!\mathbb{C}$
T_L	: Thawing final temperature, $^{\circ}\!\!\mathbb{C}$
n	: Numbers of cell
q	: Heat flux, kcal/(m ² · h)
T _{new}	: Temperature after time t in seconds, $^{\circ}\mathbb{C}$
k _c	: Reaction rate, h ⁻¹
sumk _c	: Integration value of k_c , h^{-1}

2. 数値計算によるメト化率シミュレー ション法

凍結食品の最適な解凍方法を決定するために は、まず解凍中の食品の任意の位置における経 時的温度変化を計算で求めることが必要である。 従って本研究では、まず一次元伝熱を仮定して、 凍結マグロの解凍過程における温度変化のシ ミュレーションを行った。

2.1 解凍モデル

2.1.1 見かけ比熱モデル

食品の解凍には、食品の凍結と同じモデルを 用いることができる²⁰⁾.相変化を伴う熱伝導問 題では、凍結界面の取扱いが非常に複雑となる が、本研究では無凍結界面モデルを用い、凍結 とともに放出される潜熱を見かけ上の比熱変化 とする見かけ比熱モデル²⁰⁾を用いた.

2.1.2 相変化中の熱物性値の推算式

無凍結界面モデルでは熱物性値と凍結潜熱の 取り扱いに工夫が必要となる.本研究では解凍 プロセスにおける熱物性値の推算には,凍結魚 の解凍について研究した御木の方法²¹⁾を採用し た.食品を凍結点以下に冷却すると,水分の一 部は氷結晶を生成する.食品内の全水分に対す る氷結晶の割合を凍結率 r とすると,凍結率 r は凍結点 T_fと試料温度 T で近似的に Eq.(1)で表 される.

$$T \ge T_f \Rightarrow r = 0$$

$$T \le T_f \Rightarrow r(i) = 1 - \frac{T_f}{T}$$
(1)

相変化中の食品の比熱 c, 密度 ρ 及び熱伝導率 λ は温度の関数として以下の式で表される.

$$c = c_b + \left(c_a - c_b\right) \cdot \frac{T_f}{T} - L_f \cdot \frac{T_f}{\left(T\right)^2} \quad (2)$$

$$\rho = (1 - r) \cdot \rho_a + r \cdot \rho_b \tag{3}$$

$$\lambda = (1 - r) \cdot \lambda_a + r \cdot \lambda_b \tag{4}$$

マグロ肉の熱物性値は小野¹⁸⁾の値を用いた. それを Table 1 に示す. また, 時間間隔 *△t* は 0.1[s] とした.

Table 1 Thermo-physical properties of big-eyed tuna

Specific heat [kcal/(kg·°C)]	Ca	0.82
	c_b	0.46
Density [kg/m ³]	ρ _a	1080
	Pb	1020
Thermal conductivity	λ_a	0.73
[kcal/(m·h·°C)]	λ,	1.27
Latent heat of fusion of ice[kcal/kg]	L_{f}	56.80
Freezing tenperature [°C]	T_f	-1.5

2.2 メト化予測モデル

数値計算により求められた解凍時の温度履歴 からメト化率を計算した.メト化率の変化を一 次反応とみなすと,温度が変動する場合,メト 化率増加はArrheniusの式と一次反応式の組み合 わせで表される²⁾.初期メト化率を $metMb_0$, t時間後のメト化率を $metMb_t$,頻度因子(定数) を A,活性化エネルギーを E_a ,気体定数を R と し,絶対温度 T(t)[K]を時間の関数とするとメト 化率の一次反応式は Eq.(5)で表される.

$$2.303 \cdot \log\left(\frac{100 - metMb_0}{100 - metMb_i}\right) = \int_0^t A \cdot \exp\left[\frac{E_a}{RT(t)}\right] dt$$
⁽⁵⁾

Eq.(5)の右辺は Eq.(6)により数値的に積分される.

$$A \int_{0}^{t} \exp\left[\frac{E_{a}}{RT(t)}\right] dt = \left[\frac{1}{2}(y_{0} + y_{n}) + \sum_{n=1}^{n-1} y_{n}\right] \Delta t \quad (6)$$

ここで *y*₀, *y*₁, *y*₂, ····, *y*_{n-1}, *y*_n は時間 *t*[s]に おける *A* ·*exp*(-*E*_a/*RT*)の値を表す.上式によって メト化率を推算するためには,メト化反応速度

-57-

に関するパラメータ E_aおよびAの凍結前後にお けるデータが必要となるが、マグロに関する データが整備されていないため、本研究ではカ ツオ肉について御木が求めた値²¹⁾を用いた (Table 2). 上記の計算を実行するため Visual Basic 上でプログラムを作成し、サイズ、初期条 件等必要なパラメータを入力することで解凍後 のメト化率分布を算出した. 付録にフロー チャートおよび画面例を添付した.

Table 2 Apparent activation energy (E_a) and frequency factor (A) for the rate of discoloration in the muscle of skipjack (*Katsuwounus pelamis*)

Temperature range	E _a	А
[°C]	[cal/mol]	[hour ⁻¹]
Above -2.0	2.521×10^{4}	2.239×10^{18}
-20 to -5.0	9.054×10^{4}	1.321×10^{71}
Below -5.0	1.829×10^{4}	1.836×10^{12}

Fig.2 Method of water thawing at 35° C.

3. 解凍実験および温度とメト化率のシ ミュレーション

前述の計算法が適用可能であるか確認するため,実際の凍結マグロの解凍実験を行い解凍前後のメト化率を測定し,計算値と比較した.

3.1 試料

築地市場で購入した未凍結メバチマグロ (Bigeye tuna, *Thunnus obesus*)の赤み部分を,厚 さ:5cm,縦:4cm,横:4cm に切り出し Fig.2(a)のよ うに,四方を発泡スチロールで断熱した.温度 測定用の熱電対は試料表面から 1mm 内部(表面 温度),25mm 内部(中心温度)の二点に取り付 けた.さらに厚さ 0.01mm のポリエチレン製の 袋に入れ,-40℃の冷凍庫内で凍結し,以下に述 べる解凍実験に供した.

3.2 解凍方法

解凍方法は温水解凍と空気解凍の二つの方法 を用いた.いずれの場合も解凍終温は中心0℃と した.以下に解凍方法の詳細を示す.

- (a)温水解凍(急速解凍) Fig.2(b)に示すように、
 恒温槽を 35℃(±1.0℃)に設定し、試料を撹拌
 温水中で解凍した.
- (b)空気解凍(緩慢解凍) 5℃(-4.0~+1.0℃)に設定された冷蔵庫内に試料を放置し、空気中で 解凍した.

3.3 メト化率の測定方法

解凍前のメト化率は凍結前の試料(未凍結)の 値とした.またその際,表面部と中心部におい て色調に若干の差があるため,肉塊全体を混ぜ て平均値を測定した.一方,解凍後のメト化率 は前述二つの解凍方法で解凍した後に以下の部 位ごとに測定した.すなわち,表面部(試料の 外側から5mmの厚さの肉)と中心部(試料の外 側から20mm~25mmの肉)の二ヶ所のメト化率 を測定した.また,メト化率の測定方法は尾藤 の方法¹⁰⁾に従い,503nm および540nmの吸光 度を測定し,それらの比からメト化率を求めた.

3.4 メト化率のシミュレーション

温水解凍と空気解凍の熱伝達率は予備実験で 求め,Table 3 に示す値を用いシミュレーション プログラムに入力した.また,実験値と比較す るため,実測に用いた試料のサイズや初期温度 等の条件を,Table 4 に示す通り上記プログラム に入力した.初期メト化率は凍結前に測定した 実験値とした.

Fable 3	Heat trai	nsfer co	efficient	of water	and air

There modie	Heat transfer coefficient (h)		
Thaw media	$[\text{kcal}/(\text{m}^2 \cdot \text{h} \cdot ^{\circ}\text{C})]$		
Water	170		
Air	10		

Table 4 Initial condition for simulation					
Thickness	x	5×10 ⁻² [m]			
Surface area and cross sectional area	S	$16 \times 10^{-4} [m^2]$			
Initial temperature	T _{ini}	-40[°C]			
Thaw media temperature in case of water	T _{water}	35[°C]			
Thaw media temperature in case of air	T _{air}	5[°C]			
Thawing final temperature	T_L	0[℃]			
Numbers of cell	n	50			

4. 結 果

4.1 解凍温度履歴

温水解凍の実験で得られた解凍曲線と計算に よる解凍曲線をFig.3 に,また空気解凍曲線の実 験値と計算値をFig.4 それぞれに示す.また解凍 に要した時間,すなわち中心品温が 0℃に達する 時間を Table 5 に示す. Fig.3, Fig.4 より表面部, 中心部共に実験と数値計算結果は良く一致して いることが分かる.このことから,一次元での 解凍中の食品の任意の部分において,経時的温 度変化を計算で予測するモデルがほぼ妥当であ ると考えられた.

4.2 メト化率の予測

メト化率の実験値および計算値をTable 6 に示 す.解凍前メト化率(凍結前メト化率)の測定 結果は 8.6%であった.この値をシミュレーショ ンでは初期メト化率として用いた.Table 6 の結 果を見ると,温水解凍では表面部のメト化率が 実験値,計算値共に 30%以上と高い値を示した のに対し,中心部では 10%前後と表面部との大 きな差を示す結果が得られた.一方,空気解凍 では表面部と中心部のメト化率に大きな差はな く、それぞれの部位の値は 10%台であった.い ずれの条件部位においても実験値と計算値は最 大3%前後の誤差を示した.しかしメト化率の実 測では経験的に 5%程度の誤差を生じることは 通常であり、3%程度の誤差はシミュレーション として十分な程度であると考えられる.よって 実験値と計算値は一致し、本モデルを用いたメ ト化率の予測の妥当性が示されたといえる.

Fig.3 Time-temperature curves of tuna meat during water thawing at 35° C.

Fig.4 Time-temperature curves of tuna meat during air thawing at 5° C.

Table	5	Experimental a	and	calculated	results	of
		thawing time of t	tuna	meat		

Thawing time	Water, at 35°C [min]	Air, at 5℃ [hour]
Calculation	63	19
Experiment	61	19.5

metMb %	Water, at 35°C Surface Center		Air, at 5°C		
[%]			Surface	Center	
Calculation	32.3	8.8	15.8	14.9	
Experiment	35.7	11.2	18.5	11.1	

Table 6 Experimental and calculated results of metMb% of tuna meat after thawing

Surface: 5mm depth, Center: 20mm depth Initial metMb% Surface: 8.6%, Center: 8.6%

5. 結 論

本研究では一次元伝熱を仮定して、凍結マグ ロ肉解凍時の温度分布の経時変化を計算し、そ の温度履歴をもとにマグロ肉の褐変の指標とな るメト化率の変化を予測する解凍シミュレー ションプログラムを作成した.そして本シミュ レーションの妥当性を検証した.解凍時の温度 履歴の計算には、見かけ比熱モデルを用い、メ ト化はArrheniusの式と一次反応式を組み合わせ た式より計算した.解凍曲線と解凍後のメト化 率を計算値と実験値で比較したところ、良く一 致した.よって本研究で提唱した解凍シミュ レーションモデルで最適な解凍方法を予測でき る可能性が示唆された.

文 献

- 御木英昌,西元諄一:冷空論,4(2),15-25 (1987).
- 西元諄一,青木信實:鹿大水産紀要,20(1), 163-167(1971).
- 西元諄一: 鹿大水産紀要, 23 (1), 155-161 (1974).
- 4) 尾藤方通:東海水研報, 119, 25-31 (1986).
- 5) 中出政司:冷凍, 45 (508), 114-121 (1970)
- 6) 田中武夫: New Food Industry, 11 (6) 2-9 (1970).
- 7) 尾藤方通:日水誌, 41 (10), 1031-1037, (1975).
- 8) 芦田慎也:冷凍, 74 (861), 565-567 (1999)
- J. K. S. Møller and L. H. Skibsted : Quimica Nova, 29 (6), 1270-1278 (2006).
- 10) 尾藤方通:日水誌, 31 (7), 534-539 (1965).

- 11) 尾藤方通:日水誌, 31 (7), 540-545 (1965).
- 12) 鈴木信興,橋本周久,松浦文雄:日水誌, 39 (1), 35-41 (1973).
- 13) C.-J. Chow, Y. Ochiai and S. Watabe : J. Food Biochem., 28 (2), 123-134 (2004).
- 14) K. Krzywicki : Meat Sci., 3 (1), 1-10 (1979).
- 15) W. J. Wallace, R. A. Houtchens, J. C. Maxwell and W. S. Caughey : J. Bio. Chem., 257 (9), 4966-4977 (1982).
- R. A. Mancini and M. C. Hunt: Meat Sci., 71 (1), 100-121 (2005).
- C. Viriyarattanasak, M. Watanabe and T. Suzuki: Trans. JSRAE, 24 (3), 227-233 (2007).
- 18) 小野征一郎:「マグロの科学一その生産から 消費まで一」, pp.260-301, 成山堂書店, 東 京 (2004).
- 19) 尾藤方通: 東海水研報, 84, 51-113 (1976).
- 20) 岡崎守男,渡辺尚彦,赤尾剛:「食品工学基礎講座 ⑤加熱と冷却」,pp.133-149,光琳, 東京 (1991).
- 21) 御木英昌: 鹿大水産紀要, 33 (2), 155-266 (1984).

Flow chart of numerical calculation for Visual Basic

Met1 Media					(2001)		X
初期温度	Tini	- 35	°C	凍結前密度	ρa	1080	 kg/m^3
媒体温度	Th	35]℃	凍結後密度	ρь	1020	kg/m^3
厚み	×	0.025] m	凍結前比熱	Ca	0.82	kcal/kg°C
たて	У	0.04] m	凍結後比熱	Сь	0.46	kcal/kg°C
た	z	0.04] m	凍結前熱伝導率	λa	0.7	kcal/mh℃
厚み刻み数	n	50	個	凍結後熱伝導率	λь	1.2	kcal/mh°C
時間刻み	Δt	0.1	5	凍結潜熱	Lf	57	kcal/kg
解凍終了温度	ξπ	0] ℃	凍結点	Tf	-1.5	v
初期metMb0		10	%	熱伝達係数water	• h	170	kcal/m²h°C
収束条件 R ‹‹	0.5) [0.088	計算	1			
初回	04月9			」 表面metMbt	35.	8405 %	計算
₩/Ж 由\泪南 つ		64.50 min		間metMot	12.	0038 %	
中心温度 表面温度 Ti	new(i) new(0)	29.0466 °C		中心metMot	10.	1506 %	終了

Window of calculation

191

付録