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An artificial neural network (ANN) model was developed for prediction of the cold spot temperature pro-
file during retort processing using starch dispersion (STD) as a model food. STDs of different concentra-
tions were prepared by mixing corn starch powder with distilled water at 90 �C for 30 min. Each of the
partially gelatinized STDs thus prepared was filled in retort pouches and processed in a retort under var-
ious combinations of holding temperature, holding time, and rotational speed. Thermocouples were
inserted into selected pouches one by one to monitor the cold spot temperature at regular intervals.
The profiles of cold spot temperature together with retort temperature thus obtained were served to
ANN modeling as training or validation data. Back-propagation network was chosen as the network
model. Input variables for the model were current and past temperatures of the cold spot (Tn, Tn�1,
and Tn�2) and current retort temperature hn and current time tn. Output was the temperature of the cold
spot at the next time step Tn+1. A model with 2 hidden layers, which contained 11 and 15 nodes, respec-
tively, was the best among the models tested. Using the model developed, prediction of a whole profile of
the cold spot temperature was tested, starting from temperature data of the first three time steps with a
whole profile of retort temperature monitored. The results showed very good performance of the model,
relative errors for F0 value prediction being less than 2%.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Thermal processing is a major technique for producing safe and
shelf-stable foods. Heating enhances bacterial lethality but usually
lowers product quality. Thus the technique is still desired to keep
evolving for better product quality with better energy utilization,
and more efficient production.

Ideal approach to the control of retort processing would be
based upon accurate prediction of the product cold spot tempera-
ture in response to dynamic retort temperature profile. Researchers
have developed computer models capable of simulating thermal
processing based on principles of heat transfer (Teixeira and Man-
son, 1982; Tandon and Bhowmik, 1986; Tucker, 1991; Tucker and
Holdsworth, 1991; Noronha et al., 1995). Those models can predict
the product cold spot temperature in response to dynamic temper-
ature variations brought about during a retort process. However,
they require several parameters including thermo-physical proper-
ties of materials (heat capacity, density, thermal conductivity, etc.)
and heat transfer rate constant. For precise simulation, we need
precise values of the parameters. Moreover, the parameters cannot
be always constant. In fact, because starch dispersion may suffer
ll rights reserved.
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from viscosity change during heating, some models (Yang and
Rao, 1998; Tattiyakul et al., 2001, 2002) have included viscosity
change as a function of temperature to improve the accuracy of
the predictions. From practical point of view, however, it is often
hard to obtain the precise temperature dependence of all the
parameters, which makes proper modeling even harder.

In some cases, when starch-based food is thermally processed
under intermittent agitation, broken-heating behavior is known
to occur (Stumbo, 1973; Tattiyakul and Rao, 2000; Holdsworth
and Simpson, 2008). Broken-heating behavior is characterized by
more than one distinct straight portion in a heat penetration curve,
which is a plot of the logarithmic difference between retort temper-
ature and product temperature versus processing time. More than
one straight portion in a heat penetration curve indicates transition
of overall heat transfer rate. Broken-heating behaviors in many
starch-based foods have been attributed mostly to starch gelatini-
zation (Noronha et al., 1995; Yang and Rao, 1998; Tattiyakul
et al., 2001, 2002), which causes change of the major heat penetra-
tion mechanism inside the product from convection to conduction.
For accurate prediction, we should know whether and when bro-
ken-heating occurs. Most of the traditional models have a weak
point to cope with such change in heat penetration mechanism.

Recently artificial neural network (ANN) gained popularity as a
modeling tool in many disciplines of engineering and science. The
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Nomenclature

fh heating rate factor (min)
jh heating lag factor
h number of hidden layers (h = 1 or 2)
ki number of nodes in layer i (i = 0,1, . . . ,h + 1)
t time (min)
tn time at the nth monitoring step (min)
T cold spot temperature (�C)
Tn cold spot temperature at the nth monitoring step (�C)

~Tn cold spot temperature predicted for the nth monitoring
step (�C)

w½i�k;l;m weight for x½i�m�
l connected to node k in layer i (i P 1,

m = 1, . . . , i)
w½i�k;1;0 bias for node k in layer i (i P 1)

x½i�k output from node k in layer i (i P 0, k = 1, . . . ,ki)
h retort temperature (�C)
hn retort temperature at the nth monitoring step (�C)
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most attractive feature of ANN may be its ability to find and learn a
complex relationship hidden among a number of variables. Some
recent applications of ANN to modeling of thermal process are fol-
lowing: prediction of optimal processing conditions for conduc-
tion-heated foods in cans (Sablani et al., 1995), prediction of heat
transfer coefficients associated with liquid/particle mixtures in
cans (Sablani et al., 1997), prediction of thermal process lethality
for a range of can sizes and operating conditions (Afagui et al.,
2001), prediction of heating rate parameters in sterilization pro-
cess (Mittal and Zhang, 2002), modeling and optimization of ther-
mal processing with variable retort temperature for conduction
heated foods (Chen and Ramaswamy, 2002), prediction of the cold
spot temperature of a liver paste filled in cans (Gonçalves et al.,
2005), modeling and optimization of the multiple ramp-variable
retort temperature control for thermal processing (Chen and
Ramaswamy, 2004), and modeling of heat transfer to canned par-
ticulate fluids under axial rotation processing (Dwivedi and
Ramaswamy, 2010).

In this study, an ANN model was developed for prediction of the
cold spot temperature profile during retort processing using starch
dispersion (STD) as a model food. STD is selected because it shows
broken-heating behavior depending on conditions. The ANN model
was trained with various temperature profiles including broken-
heating behaviors to make it applicable to any situation encoun-
tered in retort processing of STDs.

2. Materials and methods

2.1. Sample preparation

Corn starch powder (Sigma–Aldrich, MO, USA), containing 73%
amylopectin and 27% amylose, was used to prepare 3%, 10%, and
20% STDs by mixing thoroughly with distilled water in a jacketed
kettle mixer (STM-5, Shinagawa Machinery Works Co. Ltd., Nara,
Japan). During the mixing, the mixture was heated at 90 �C for
30 min for partial gelatinization, while evaporation loss was com-
pensated for by water addition. After the partially gelatinized STD
was cooled to room temperature, laminated retort pouches
(PET12/AL9/NY15/CP60; HR-Type, Meiwa Sanshou Co. Ltd., Osaka,
Japan) were filled with 250 g portion of STD and sealed under vac-
uum (Old Rivers FVC-II, Furukawa Mfg. Co. Ltd., Tokyo, Japan). The
size of the pouch was 130 � 180 mm in most experimental runs. In
a few runs for validation purpose, pouches of a slightly larger size
of 130 � 230 mm were also used.

2.2. Experimental procedure

Retort processing was carried out using a pilot scale retort (RCS-
40RTGN, Hisaka Works Ltd., Japan) in its stationary or rotary mode.
Ten trays, each of which was loaded with four pouches, were piled
up in the retort. Preliminary experiments showed that the slowest
heating occurred in a pouch on the second tray adjacent to the
bottom one. Therefore, a thermocouple was inserted into the geo-
metric center of each pouch loaded on the second tray to obtain
heat penetration data. Temperature readings of the thermocouple
were computer-recorded at 2-s intervals via a data logger. The
temperature history with the slowest rise was chosen as the cold
spot temperature. We employed a range of retort processing con-
ditions as listed in Table 1. Each run started with pre-heating by
holding retort temperature at 90 �C for 3 min. Further heating
schedule was designed for F0 value to reach 6.0 min at least. F0 va-
lue, a measure of accumulated lethality, denotes the equivalent
exposure time at 121.1 �C calculated for a microorganism with a
Z-value equal to 10 �C, as shown in Eq. (1).

F0 ¼
Z t

0
10ðT�121:1Þ=10dt ð1Þ

where T (�C) is the cold spot temperature at time t (min). At the end
of the sterilization, cooling was initiated with air pressurization to
avoid inflation of the pouches.

2.3. Development of ANN model

The main feature of the model was prediction of the cold spot
temperature step by step from the following data: cold spot tem-
peratures monitored at the latest three time steps (Tn, Tn�1, and
Tn�2), retort temperature (hn), and time (tn) at the step. The output
variable was the cold spot temperature at the next time step (Tn+1).
The time step width was the same as the interval of temperature
monitoring. Thus the model was designed to calculate the cold spot
temperature shortly ahead on the basis of the short temperature
history already known.

As shown in Fig. 1, ANN model architecture employed here had
h + 2 layers, where h was the number of hidden layer (h = 1 or 2).
Layer i (i = 0, . . . ,h + 1) was composed of ki nodes. Layer 0 was the
input layer having five nodes (k0 = 5), each of which took the
pre-treated value of Tn, Tn�1, Tn�2, hn, or tn as a single input and
put it out as it was to the hidden layer(s). The pre-treatment of in-
put data was performed by applying logarithmic function to the
base 10 twice, as shown in Eq. (2), in which Tn is taken as an exam-
ple of input data.

T 0n ¼ log10ðlog10ðTnÞÞ ð2Þ

where T 0n is the pre-treated value of Tn. Hereafter the output from
each node of layer 0 is referred to as x½0�k (k = 1, . . . ,k0) for a time step.
As for the hidden layer(s), node k (k = 1, . . . ,ki; ki 6 15) in layer i
(1 6 i 6 h) accepts inputs, x½i�m�

l (l = 1, . . . ,ki�m; m = 1, . . . , i), from all
the prior layers and makes an output, x½i�k , according to Eq. (3).

x½i�k ¼ f
Xi

m¼1

Xki�m

l¼1

w½i�k;l;m � x
½i�m�
l þw½i�k;1;0

 !
ð3Þ

where w½i�k;l;m and w½i�k;1;0 (k = 1, . . . ,ki) represent connection weight for
each input and bias, respectively. Transfer function, indicated as f in



Table 1
Retort processing conditions employed for acquisition of training and testing data.

Parameter Experimental range

Rotational speed (rpm) 0, 5, 10, 15, 20, 25
Holding temperature (�C) 118, 120, 122
Holding time (min) 12, 15, 20, 22

Fig. 1. Network architecture employed for ANN model in this study. A model with
two hidden layers is illustrated. The input layer (layer 0) had five nodes. Each node
in hidden and output layers was connected with nodes in prior layers.
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Fig. 2. Prediction modes for validation of the model constructed: (a) step prediction
mode and (b) whole prediction mode. Five input variables in each prediction step
are connected with each other by an arrow pointing to an output variable indicated
as a shaded circle.
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Fig. 3. Comparison of cold spot temperature profiles of 20% STD processed with and
without rotation (25 rpm) under the same retort temperature program. For the sake
of simplicity, only the retort temperature profile monitored with rotation is
illustrated.
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Eq. (3), is usually selected from s-shaped functions. In the model
finally established, hyperbolic tangent function was employed as
the transfer function. The highest layer h + 1 was the output layer
having a single node (kh+1 = 1) to give a single output x½hþ1�

1 according
to Eq. (4).

x½hþ1�
1 ¼ f

Xh

m¼1

Xki�m

l¼1

w½hþ1�
1;l;m � x

½hþ1�m�
l þw½hþ1�

1;1;0

 !
ð4Þ

The prediction candidate for Tn+1, referred to as ~Tnþ1 hereafter, was
obtained by post-treatment of the output x½hþ1�

1 using the inverse
transformations of Eq. (2).

Because prediction error depends on a set of weights and bias,
w½i�k;l;m and w½i�k;1;0, we can improve the weight set by a well-known
procedure called back-propagation, to obtain prediction candidates
closer to the corresponding monitored values (training data). Iter-
ations of back propagation according to Extended Delta–Bar-Delta
training rule, with testing processes at appropriate intervals using
sets of data (testing data) preliminarily excluded from the training
data, gave the trained model with the optimum weight set for the
layer configuration. The testing stage is important to avoid over-
training of the network. The iterations of back propagation and
testing at appropriate intervals were conducted with a commercial
software, NeuralWorks Professional II/Plus (Neuralware Inc., Pitts-
burg, PA, USA). Hereafter the model thus trained was denoted as
BP-5-k1-1 or BP-5-k1-k2-1 on the basis of the number of nodes con-
tained in each layer.

The optimal layer configuration for the best predictive perfor-
mance was selected on a trial-and-error basis among 240 possible
configurations, from BP-5-1-1 to BP-5-15-15-1. The lower predic-
tion error was sought by increasing the number of nodes in each
hidden layer. As measures of the prediction error, we employed
the coefficient of determination, R2, together with the mean and
standard deviation of absolute values of relative error, jREj and
SD|RE|. The measure R2 is defined as follows:

R2 ¼ 1�
PN

n¼1ðTn � ~TnÞ2PN
n¼1ðTn � �TÞ2

ð5Þ
where ~Tn is the cold spot temperature predicted by ANN model for
the nth time step, �Tn is the mean of the cold spot temperatures
monitored through the experiment, and N is the total number of
time step. The measures jREj and SD|RE| are defined as follows:

jREjn ¼
jTn � ~Tnj

Tn
ð6Þ

jREj ¼ 1
N

XN

n¼1

jREjn ð7Þ

SDjREj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
n¼1ðjREjn � jREjÞ2

N � 1

s
ð8Þ

The values, R2 and jREj, have been often employed as measures of
predictive accuracy for ANN models (Sablani et al., 1997; Afagui
et al., 2001; Chen and Ramaswamy, 2002, 2004, 2006a,b; Mittal
and Zhang, 2002; Sablani and Rahman, 2003; Dwivedi and Ramasw-
amy, 2010).
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Table 2
Comparison of prediction errors for time–temperature profile produced at ANN-
testing stage by trained networks with best architectures.

Network architecture R2 jREja

Type I BP-5-7-12-1 0.9955 0.0103 ± 0.0092
BP-5-11-15-1 0.9955 0.0050 ± 0.0068
BP-5-13-14-1 0.9955 0.0054 ± 0.0062

Type II BP-5-5-0-1 0.9951 0.0219 ± 0.0115
BP-5-7-1-1 0.9951 0.0234 ± 0.0158
BP-5-4-14-1 0.9936 0.0220 ± 0.0114

a Mean ± standard deviation of absolute values of relative error for all the time
steps.
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2.4. Validation of predictive performance of ANN model

Predictive performance of the model obtained as mentioned
above was checked for temperature profiles not previously
Table 3-1
Weights of connections, w½1�k;l;m , and biases, w½1�k;1;0 (m = 0, l = 1), to node k on hidden layer 1

m l k

1 2 3 4 5 6

1 1 �0.07216 0.064064 �0.116733 0.24463 �0.092895 0.
1 2 �0.11744 0.033343 0.005981 0.016803 �0.040465 �0.
1 3 �0.347027 0.199926 0.303523 0.901079 0.395982 �0.
1 4 0.111007 0.120675 0.185015 0.221771 �0.286663 �0.
1 5 �0.085652 1.014736 �0.261032 �0.540751 �0.400346 0.
0 1 0.241929 0.189456 �0.139505 �0.701701 �0.051167 �0.
encountered by the model. Four new temperature profiles of STD
during retort processing were obtained for this purpose. The ANN
model developed above predicts the next step temperature from
the latest three temperatures already known. The first check was
based on such step-by-step mode of prediction. On the other hand,
we can take an output temperature as the input at the next time
step. Thus, even with the model developed, it is possible to calcu-
late a whole temperature profile starting from temperatures at the
first three time steps together with a whole course of retort tem-
perature. Hereafter, this prediction mode is referred to as whole
prediction mode, while the original one is referred to as step pre-
diction mode. Input data employed at initial time steps for both
prediction modes are shown schematically in Fig. 2. Calculation
by the whole prediction mode was performed on a spreadsheet,
as was suggested by Hajmeer et al. (2006), based on Eqs. (2)–(4)
with all the weights determined through training of the ANN
model.

3. Results and discussion

3.1. Characteristics of heat penetration

Major factors affecting retort process of STDs considered here,
in addition to retort temperature program, are the starch concen-
tration and the rotational speed of retort. Fig. 3 shows typical tem-
perature histories of 20% STD with and without rotation at 25 rpm
during retort processing. Retort temperature programs in the two
cases were the same, resulting in similar retort temperature histo-
ries. Thus, for the sake of simplicity, only the retort temperature
history for the case with rotation is shown in Fig. 3. As already
mentioned, the retort temperature was initially controlled to keep
90 �C for 3 min, thereafter it was raised to a holding temperature
(120 �C in these cases). Comparison of these two cases shows that
rotation definitely increased heat penetration rate.

Fig. 4 shows typical heat penetration curves, logarithm of differ-
ence between holding temperature and product temperature as a
function of processing time, for 3% and 20% STDs processed with
rotation. For 20% STD, the curve gave a single straight line after
several minutes of initial lag period. The reciprocal of slope of
the asymptote, called heating rate factor, fh, which means time
for one log change in ordinate, was determined to be 10.0 min in
this case. Similar heat penetration curve with a single straight por-
tion was obtained in every run for 20% STD and also for 10% STD.
On the other hand, the curve for 3% STD after an initial lag period
was approximated by two straight lines, indicating two stages of
heat penetration, recognized as a broken-heating behavior. The va-
lue of fh was initially as low as 2.6 min. But after the break point, it
became 11.0 min, a comparable value to the case of 20% STD. The
significant increase in fh value indicates decrease in heat penetra-
tion rate, which is probably attributed to sol–gel transition caused
by starch gelatinization, as known for many starch-based foods
(Noronha et al., 1995; Yang and Rao, 1998; Tattiyakul et al.,
2002). It has been recognized that low starch concentrations with
intermittent agitation are apt to bring about broken-heating
of BP-5-11-15-1.

7 8 9 10 11

035416 �0.170997 0.304539 �0.372617 �0.318406 0.408249
230484 �0.029974 0.090115 0.346221 �0.194951 �0.101963
202817 �0.522875 0.086771 0.028165 0.343548 �0.435095
007606 �0.847707 �0.088135 0.230044 0.211095 �0.047548
200062 �0.71432 0.036225 �0.149112 0.013083 0.239624
254199 1.01424 0.125151 �0.261349 �0.256727 �0.136715



Table 3-3
Weights of connections, w½3�1;l;m , and bias, w½3�1;1;0 (m = 0, l = 1), to the node on output layer of BP-5-11-15-1.

m l

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 �0.199688 0.056659 �0.032404 0.140934 �0.094153 �0.108568 �0.023172 0.171969 �0.031515 0.179055 �0.205381 � � � �
1 0.438569 0.015969 �0.268172 �0.160161 �0.366338 �0.145059 �0.017018 �0.009095 0.071753 �0.023777 0.089336 0.072486 0.202592 �0.094482 0.138529
0 0.044207 � � � � � � � � � � � � � �

Table 3-2
Weights of connections, w½2�k;l;m , and biases, w½2�k;1;0 (m = 0, l = 1), to node k on hidden layer 2 of BP-5-11-15-1.

m l k

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 1 �0.031643 0.268168 0.168603 0.248962 0.182196 0.08535 0.138324 �0.125173 �0.004945 �0.02707 �0.158068 0.14659 �0.195059 0.095242 �0.145672
2 2 0.075335 �0.132403 �0.296853 0.232809 0.052149 �0.138666 0.190902 �0.084293 0.284716 �0.201624 �0.160931 �0.067657 0.171612 �0.293111 �0.013684
2 3 �0.272312 0.236833 �0.160158 �0.196662 �0.454523 �0.015697 0.217596 0.111918 �0.030054 �0.082568 0.201232 �0.244598 0.185659 0.02687 0.349619
2 4 �0.450007 0.282049 �0.297276 0.136865 �0.127584 �0.048257 0.044251 0.024161 �0.164288 �0.188638 0.241774 �0.17017 0.218022 0.039188 0.274366
2 5 �0.398197 �0.10053 �0.30111 �0.077689 �0.264343 �0.150105 0.301611 0.075896 0.206774 �0.094224 �0.191393 �0.06418 �0.05102 �0.091652 �0.2766
1 1 �0.056397 0.227936 0.03134 0.101068 �0.211128 �0.069342 0.18879 0.142026 0.295746 0.05874 0.002087 0.240806 �0.285312 �0.221821 0.22932
1 2 �0.363586 �0.128663 0.357585 0.113023 0.180462 0.028305 0.284123 0.099488 �0.245165 0.163219 �0.127417 �0.101289 �0.191396 0.02668 �0.126713
1 3 0.141329 �0.085174 �0.160031 �0.128489 �0.245488 �0.176747 �0.2708 0.037567 �0.224799 �0.237952 �0.240095 �0.308018 �0.157652 0.146542 0.042299
1 4 0.16313 0.231103 �0.228775 �0.173623 �0.024903 �0.054978 0.302359 �0.135789 0.206813 �0.274528 �0.002782 0.06588 0.136742 �0.047953 �0.053933
1 5 0.394024 �0.132319 �0.176392 0.070889 �0.08551 �0.056266 0.287695 �0.068245 0.145451 �0.049712 �0.01534 �0.129885 0.184563 �0.243525 �0.171872
1 6 0.186804 �0.166311 �0.153209 0.308781 0.076135 0.129882 �0.188236 �0.191796 0.274788 0.11877 0.092271 �0.169223 �0.016318 0.008879 0.161107
1 7 0.026769 �0.132224 �0.370843 0.011681 �0.593005 �0.365663 0.262126 �0.254861 0.073139 �0.316793 �0.058268 0.311439 0.149565 0.082591 0.088738
1 8 �0.079351 �0.22662 0.323933 �0.199316 �0.170161 0.228698 0.139915 0.040362 0.095019 �0.270028 0.002804 �0.072309 �0.225061 0.005462 �0.015282
1 9 �0.202552 0.084916 �0.133355 0.268127 0.034366 0.020566 �0.181881 �0.007984 0.163932 0.215014 0.10515 �0.039174 �0.207798 �0.137021 0.140354
1 10 0.118788 �0.230704 0.202039 0.024539 0.263404 �0.192983 0.184582 0.051856 �0.236634 �0.266906 �0.256187 0.184324 0.142783 �0.075569 �0.022533
1 11 �0.144736 0.243941 �0.282637 0.052219 �0.212628 0.236061 �0.073631 �0.254831 0.226597 �0.278086 �0.266696 �0.268707 �0.011429 0.089278 0.056053
0 1 �0.271853 0.085521 �0.031239 �0.215167 �0.251758 �0.07275 �0.022524 0.075 �0.146561 0.005728 �0.237796 �0.222658 �0.111075 0.12146 0.185313
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Table 4
Comparison of prediction errors by BP�5-11�15-1 for validation runs.

Run Conditions Step prediction Whole prediction

STD (%) Pouch (mm �mm) Rota (rpm) Temp.b (�C) Timec (min) Temperature profile F0 Temperature profile F0

R2 jREjd REe R2 jREjd REe

A 3 130 � 230 25 120 15 0.9992 0.0052 ± 0.073 �0.0351 0.9979 0.0164 ± 0.0188 �0.0195
B 3 130 � 230 0 120 20 0.9983 0.0042 ± 0.0049 �0.0320 0.9981 0.0143 ± 0.0192 �0.0046
C 10 130 � 180 15 120 20 0.9981 0.0045 ± 0.0055 0.0073 0.9983 0.0132 ± 0.0199 0.0043
D 20 130 � 180 5 120 22 0.9993 0.0060 ± 0.0069 0.0333 0.9983 0.0155 ± 0.0154 �0.0151

a Rotation speed.
b Holding temperature.
c Holding time.
d Mean ± standard deviation of absolute values of relative error for all the time steps.
e Relative error of the final F0 value.
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Fig. 6. Prediction by the model BP-5-11-15-1 in step prediction mode for validation
run A. (a) Predicted time–temperature profile and F0 value in comparison with
experimental ones. (b) Correlation between predicted and observed temperatures
at the cold spot.
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behaviors (Stumbo, 1973; Tattiyakul and Rao, 2000; Holdsworth
and Simpson, 2008).

From each set of data monitored, a heat penetration curve was
drawn to determine its heating rate factor, fh, together with an-
other characteristic parameter called heating lag factor, jh, relating
to the intercept of the asymptote of heat penetration curve on the
vertical axis defining the beginning of the heating period (Holds-
worth and Simpson, 2008).

3.2. Construction of ANN model

Seventy heat penetration curves (temperature profiles of the
cold spot and the retort) obtained through retort processing of
STDs were supplied for network training and testing. They were di-
vided into a training subset composed of 55 curves (58,997 time
steps) and a testing subset composed of 15 curves (15,268 time
steps). The heat penetration curves included in each subset are
indicated in Fig. 5 by their characteristic parameters of heating rate
index fh and heating lag factor jh.

Although we finally employed hyperbolic tangent as the trans-
fer function and Extended Delta–Bar-Delta as the learning rule to
search for the best layer configuration, another combination of
transfer function and learning rule, standard sigmoid transfer func-
tion and Delta learning rule, was also tested for comparison. The
two transfer functions are quite similar to each other as to their
s-shape, though their output ranges are different. The latter combi-
nation, a rather familiar combination for ANN modeling, is referred
to as type II network, while the former is referred to as type I
network.

Table 2 lists three best layer configurations of each network
type selected on the basis of low levels of prediction error in step
prediction mode. For type I network, the best layer configuration,
which produced the highest R2 value and the lowest jREj value,
was composed of two hidden layers with 11 nodes on the first
layer and 15 on the second layer. The value of jREj for this config-
uration was 0.50% with a standard deviation of 0.68%. For type II
network, the best layer configuration consisted of one hidden layer
with five nodes, attaining jREj value of 2.19% with a standard devi-
ation of 1.15%. Thus, type I network showed the better predictive
performance.

We decided to employ BP-5-11-15-1 of type I network, which
gave the best prediction among the models tested. For further
improvement of its predictive performance, a variety of values of
tuning parameters for training, namely learning rate g (0 < g 6 1;
0.5 as the default value of the software) and momentum
l(0 6 l 6 1; 0.4 as the default value), were tried. We finally set
g = 0.095 and l = 0, because this combination yielded the highest
R2 value and the lowest jREj value. The set of connection weights
and biases thus obtained finally for BP-5-11-15-1 of type I network
are listed in Tables 3-1, 3-2 and 3-3.
3.3. Predictive performance of the model constructed

BP-5-11-15-1 of type I network, which was found to show the
best performance among tested, was subjected to its validation.
Four experimental runs A–D were newly performed to provide val-
idation data. Their experimental conditions are listed in Table 4.
Runs A and B with 3% STD were typical cases of broken-heating.
Runs C and D with concentrated STDs (10% and 20%) were cases
producing gel-like samples during retort processing, thus showing
heat penetration behaviors different from broken-heating. Not
only time–temperature profile predicted, but also F0 value, calcu-
lated based on the predicted time–temperature profile, were com-
pared with experimental ones. The prediction was performed in
step prediction mode as well as in whole prediction mode.

In Fig. 6, the cold spot temperatures predicted by BP-5-11-15-1
in step prediction mode are compared with experimental ones
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Fig. 7. Time–temperature profiles and F0 values of runs A–D predicted by BP-5-11-15-1 in whole prediction mode in comparison with experimental ones.
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during a retort process for Run A (3% STD with rotation at 25 rpm
and holding at 120 �C for 15 min), for example. A very high degree
of coincidence was observed between them (R2 > 0.999), indicating
an excellent adjustment of ANN model to the retort process
behavior.

Table 4 compares prediction errors of the both prediction modes
for each validation run. The values of jREj for the time–temperature
profile were found slightly higher in whole prediction mode than in
step prediction mode. On the contrary, whole prediction mode gave
lower relative errors to F0 value than step prediction mode. This can
be because whole prediction mode gave large jREjn values for the
cold spot temperature at beginning, where temperature was too
low to affect F0 value. At higher temperatures, whole prediction
mode gave rather good prediction, which lowered the relative error
of F0 value. To illustrate this, time–temperature profiles and F0 val-
ues for runs A–D predicted by BP-5-11-15-1 in whole prediction
mode are shown in Fig. 7 in comparison with corresponding exper-
imental ones. Good similarity between the experimental values and
the predicted ones were found especially at a high temperature re-
gion for all of the four runs.

Successful results were obtained by whole prediction mode
even though only three data of cold spot temperature at the very
beginning of the heating were used. This may be because the mod-
el distinguishes the sample type on the basis of tiny increases in
cold spot temperature during the initial time steps. The average in-
crease in cold spot temperature in 4 s of initial heating was 0.9 �C
for 3% STD, 0.5 �C for 10% STD, and 0.2 �C for 20% STD. The common
pre-heating schedule and initial rapid elevation of retort tempera-
ture probably help the successful estimation of sample type by the
model from cold spot temperatures at the very beginning of heat-
ing. Alternatively, the common pre-heating program and initial ra-
pid elevation of retort temperature may be requisite conditions for
the applicability of the model developed.

Using a similar ANN model architecture, namely taking known
temperatures at three time steps as input, Gonçalves et al. (2005)
reported that relative prediction errors of F0 value were lower than
2.6% for food cans which underwent purely conductive heat trans-
fer. Although the experimental situations and ANN model con-
struction were not the same, we obtained similar, yet better,
accuracy of prediction. Moreover, several types of heat transfer
mode were included in the ANN model constructed in this study:
conduction, convection, and their transition (broken-heating).
Thus the model constructed in this study expanded the scope of
the prediction by ANN to retort foods with non-conductive heat
transfers, including broken-heating.

ANN model is recognized as a black box regression model (Sab-
lani et al., 1997; Dwivedi and Ramaswamy, 2010), not based on
heat transfer principles. Thus, in general, ANN model is much less
reliable outside the range of training data set. This may be an
obstacle for ANN model to extend the applicable range of condi-
tions. Further investigation on the applicable conditions or limita-
tions of the model is desired.
4. Conclusions

ANN model BP-5-11-15-1 developed by training with heat pen-
etration data for STDs was found successful to predict time–tem-
perature profile and thermal lethality with high accuracy under
variety of processing conditions, irrespective of heat transfer
modes. Its excellent performance for STDs suggests that the model
may be useful for prediction and control of retort process of foods
containing starch as a thickening agent. Further study is desired to
extend the range of target foods for the model developed.
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