Last update: 28 Dec 2015
日時: 2016年1月20日(水)15:00 - 17:50
場所:東京海洋大学海洋工学部 (越中島キャンパス) 2号館7階712号室
概要: マッチングはオークションと並ぶゲーム理論的メカニズムデザイン(制度設計)の
重要な適用領域であり,生徒と学校をマッチする学校選択制,研修医と病院をマ
ッチする研修医配属問題,また,大学関係者に非常に身近な問題として,学生を
卒業研究の研究室にマッチする研究室配属問題などの広範な応用を持つ.マッ
チング理論の基本的なモデルは安定結婚問題 (stable marriage problem) とし
て知られている.この問題では,男性は女性に,女性は男性に対して選好をもつ
と仮定して,各男性(女性)がどの女性(男性)と結婚するのが望ましいかを考える.
そこで定義される望ましい男女の組合せ(マッチング)を求めるには,どんな手続
き(メカニズム)を用いるべきなのかを議論する.
本発表ではマッチングの基本モデルから,メカニズムを設計・分析する上で鍵とな
る概念を説明する.その上で,代表的なマッチングメカニズムである受入保留 (
deferred acceptance, DA) メカニズムを概説する.DAよって得られるマッチング
は安定性を満たし,学生/研修医にとって自身の選好を偽る誘因が存在しない.し
かし現実の問題では,マッチング結果になんらかの制約条件を課したくことがある.
例えば,離島の病院に一定の人数の研修医が配属されることを保証する下限制
約,都市部の病院に研修医が過度に集中することを防ぐ地域上限制約などがあ
る.こうした制約のもとでは DA メカニズムを適切に動作させるための方法につい
て解説する.
16:10 - 17:10
講演者: 奥村保規(東京海洋大学)
講演タイトル: 一般的制約付き学校選択問題:保育所の待機児童問題に対するマーケットデザイン的なアプローチ
概要: 本報告では,一般化された制約の下での学校選択問題を考える.学校に対する 生徒の割当をマッチングとよぶ.まず,望ましいマッチングの条件 を考え,マッチ ングが満たすべき5つの条件を導入する.次に,それらの条件をすべて満たすマ ッチングを求めるためのアルゴリズムを導き,その アルゴリズムの利点や欠点に ついて議論する.このアルゴリズムは,横浜市の保育所制度から着想を得たもの であり,その制度と比較して論じ,現行の保育所制度への適用可能性を議論する.
17:20 - 17:50 ディスカッション